SCRC Supercritical Rankine cycle
SRH Single reheat
ST Steam Turbine
USC Ultra supercritical cycle

List of symbols

- η efficiency
- ε specific exergy
- β reduced pressure
- θ reduced temperature
- χ reduced volume
- ε reduced enthalpy
- ξ reduced free enthalpy
- ψ reduced free energy
- Σ Sum
- V range for K-function constant
- Z Notation for the equation

CONTENTS

Abstract i
Nomenclature vii
Contents x
o outlet

tur turbine

wi water inlet

Superscripts

~ Molar Quantity

_ Dimensionless

0 Standard environmental state

ΔT Thermal component

Acronyms and abbreviations

A Flue gas boiler entry

B Flue gas boiler exit

BOI Boiler

C Condenser

DRH Double reheat

FEL Fractional Exergy Loss

P Pump

R Reheat pressure ratio

R_1 First reheat pressure ratio

R_2 Second reheat pressure ratio

RH Reheat

SCC Supercritical cycle
List of Tables xvi
List of Figures xvii

CHAPTER 1 Introduction 1-13
1.1 Background 3
1.2 Rankine cycle 4
1.3 Supercritical steam: definition 8
1.4 Methods of increasing efficiency of Rankine cycle 11

CHAPTER 2 Literature Review 14-31
2.1 Energy Scenario 14
2.2 Rankine cycle: Energy and Exergy Analysis 16
2.3 Motivation and Objectives 29

CHAPTER 3 Development of Computer program for Steam properties 32-53
3.1 Subregions of pressure-temperature and temperature-entropy diagrams 32
3.2 Formulation and Equation 34
3.2.1 Reduced Dimensionless Quantities 34
3.2.2 Thermodynamic Relations 35
3.3 Specification of the sub-regions 36
3.3.1 The Subregions are specified in the following table and illustrated in Figure 3.1 and 3.2 36
3.3.2 Equations for Boundaries between Sub-regions 36
3.3.2.1 The K-Function 36
3.3.2.2 The L-function 36
3.3.3 Constants relating to boundaries between subregions 37
3.3.3.1 Primary constants 37
3.3.3.2 Expressions for values of derived constants 37
3.3.3.3 Numerical values of derived constants 37
3.4 Sub-Formulations 37
3.4.1 Subregion 1
3.4.2 Subregion 2
3.4.3 Subregion 3
3.4.4 Subregion 4
3.4.5 Subregions 5 and 6
3.4.6 Subregion 5
3.4.7 Subregion 6

3.5 The K-Function
3.6 Canonical Functions
 3.6.1 The A-Function
 3.6.2 The B-Function
 3.6.3 The C-Function
 3.6.4 The D-Function
 3.6.5 Constants Relating to Canonical Functions

3.7 Values of the constants
3.8 Derived Constants
 3.8.1 Numerical Values of Derived Constants
 3.8.2 Derived form of the L-Function and Values relating to Constants

3.9 Derived Functions
 3.9.1 Subregion 1
 3.9.2 Subregion 2
 3.9.3 Subregion 3
 3.9.4 Subregion 4

3.10 Algorithm to find the steam properties

CHAPTER 4 Thermodynamic Analysis of Supercritical Rankine cycle

4.1 Assumptions Made in the Analysis
4.2 Range of variable parameters
4.3 Flowchart for the energy and exergy analysis of
Supercritical Rankine cycle 56

4.4 Energy efficiency of Supercritical Rankine cycle 57

4.5 Exergy efficiency of Supercritical Rankine cycle 57

4.5.1 Estimation of irreversibility or exergy loss in different component of the cycle 59

4.5.1.1 Boiler 59

4.5.1.2 Steam turbine 60

4.5.1.3 Condenser 60

4.5.1.4 Pump 60

4.5.1.5 Exhaust 61

4.5.1.6 Total irreversibility 61

4.5.1.7 Exergy efficiency 61

4.6 Fractional exergy loss 61

4.7 Parametric effect on the performance of Supercritical Power cycle 62

4.7.1 Effect of turbine inlet temperature and pressure on energy efficiency 62

4.7.2 Effect of turbine inlet temperature and pressure on exergy efficiency 66

4.7.3 Effect of turbine inlet temperature and pressure on fractional exergy loss 72

4.7.4 Effect of condenser pressure on the performance 74

4.7.5 Effect of boiler inlet flue gas temperature on exergy efficiency 81

4.7.6 Effect of boiler flue gas outlet temperature on exergy efficiency 87

CHAPTER 5 Thermodynamic Analysis of Supercritical Rankine with single reheat cycle 93 -131

5.1 Supercritical cycle with single reheat 93

5.2 Flowchart of Supercritical Rankine cycle with single reheat 97

5.3 Energy efficiency of Supercritical Rankine cycle
5.4 Exergy efficiency of Supercritical Rankine cycle with single reheat

5.4.1 Estimation of irreversibility or exergy loss in Different component of the cycle with single reheat

5.4.1.1 Boiler
5.4.1.2 Steam turbine
5.4.1.3 Condenser
5.4.1.4 Pump
5.4.1.5 Exhaust
5.4.1.6 Total irreversibility
5.4.1.7 Exergy efficiency

5.5 Parametric effect on the performance of Supercritical power cycle with single reheat

5.5.1 Optimum reheat pressure ratio
5.5.2 Effect of turbine inlet temperature and pressure on energy efficiency
5.5.3 Effect of turbine inlet temperature and pressure on exergy efficiency
5.5.4 Effect of turbine inlet temperature and pressure on fractional exergy loss
5.5.5 Effect of Condenser pressure on the performance
5.5.6 Effect of boiler flue gas inlet temperature on exergy efficiency
5.5.7 Effect of boiler flue gas outlet temperature on exergy efficiency

CHAPTER 6: Thermodynamic Analysis of Supercritical Rankine with double reheat cycle

6.1 Supercritical cycle with double reheat
6.2 Flowchart of Supercritical Rankine cycle with double reheat
6.3 Energy efficiency of Supercritical Rankine cycle with double reheat 137

6.4 Exergy efficiency of Supercritical Rankine cycle with double reheat 137

6.4.1 Estimation of irreversibility or exergy loss in different component of the cycle with double reheat 137

6.4.1.1 Boiler 137
6.4.1.2 Steam turbine 138
6.4.1.3 Condenser 139
6.4.1.4 Pump 139
6.4.1.5 Exhaust 139
6.4.1.6 Total irreversibility 139
6.4.1.7 Exergy efficiency 139

6.5 Parametric effect on the performance of Supercritical power cycle with double reheat 140

6.5.1 Optimum reheat pressure ratio of second reheat pressure ratio 140
6.5.2 Effect of turbine inlet temperature and pressure on energy efficiency 147
6.5.3 Effect of turbine inlet temperature and pressure on exergy efficiency 149
6.5.4 Effect of turbine inlet temperature and pressure on fractional exergy loss 154
6.5.5 Effect of condenser pressure on the performance 156
6.5.6 Effect of boiler flue gas inlet temperature on exergy efficiency 161

6.5.7 Effect of boiler flue gas outlet temperature on exergy efficiency 164

CHAPTER 7: Results and Discussions 168-180

7.1 Comparison of variation in energy efficiency of
different cycles 168
7.2 Comparison of variation of energy efficiency and exergy efficiency with condenser pressure of different cycles 175
7.3 Comparison of variation of exergy efficiency of boiler flue gas inlet temperature 177
7.4 Comparison of variation of exergy efficiency of boiler flue gas outlet temperature 179
7.5 Comparison of variation of fractional exergy loss of components 180

CHAPTER 8: Conclusions and Scope of the future work 181-193

REFERENCES 194-208

APPENDIX
A-1 Value of constants 209
A-2 Development of Computer program for Steam Properties 217
A-3 Validation of Computer Values 236
A-4 Computer program for getting Saturation temperature 237
A-5 Computer program for getting Saturation pressure 244
A-6 Computer program for mean molar isobaric heat capacity 247
A-7 Computer program for mean molar isobaric exergy capacity 253
A-8 Computer program for Supercritical Rankine cycle 259
A-9 Computer program of Supercritical Rankine cycle with single reheat 266
A-10 Computer program of Supercritical Rankine cycle with double reheat 274
A-11 Sample Calculations 283