LIST OF FIGURES

Fig.1.1: Worldwide prevalence of HIV. Adults and children to be living with HIV/AIDS as of end of 2003.
Fig. 1.2: Schematic diagram of mature Virus Particles
Fig. 1.3: HIV-1 Genome Organization
Fig.1.4: HIV-1 Life Cycle
Fig.1.5: Inhibitors of HIV-1 PR
Fig.1.6: Inhibitor of HIV-1 RT
Fig.1.7: Inhibitors of HIV-1 IN. A) Elvitegravir, B) MK-2048
Fig.1.8: Illustration of a chemical reaction with and without enzyme. The red curve illustrates a reaction without any enzyme activity. As illustrated, if an enzyme acts catalytically at the chemical reaction (blue curve), the necessary activation energy to start the reaction is significantly lower.
Fig.1.9: Illustration of a chemical reaction involving an enzyme. After a substrate has bound (first and second picture from the left) a chemical reaction takes place. After the reaction is completed, the products are released and the enzyme is ready for the next reaction (first and second picture from the right).
Fig.1.10: Illustration of drug activity upon an enzyme. Because of the bound drug (left picture), the natural substrate can not bind and the enzymatic process is stopped (right picture).
Fig.1.11: Schematic representation of the signal pathway of hormones. If a cell has the corresponding receptor to a hormone, then it can bind tightly to the receptor and a signal is transferred into the cell (here to the cell core).
Fig. 1.12: Schematic illustration of how an ion-channel is opened by an induced conformational change of a receptor. Before the messenger binds to the receptor, the receptor structure hinders ions to flow through the ion channel. After the messenger has bound, the receptor changes its conformation, which leads, in this example, to an opening of the ion-channel.
Fig.1.13: Sketch of how an induced conformational change of a receptor structure enables enzymatic reactions to take place. Before a messenger is being bound to a receptor, the active site of a neighboring enzyme in the cell
interior is closed. If the messenger is bound to the receptor, the receptor changes its conformation and induces an additional conformational change of the enzyme. As a result the active site of the enzyme opens and substrates in the cell interior can start a catalytic reaction.

Fig. 1.14: Illustration of possible side chain flexibility, as used by our program FlexScreen. FlexScreen allows, for example, the side chain arginine a maximum of three degrees of freedom: three dihedral angles are allowed to be changed. Possible dihedral angles depend on low energy interactions of the side chain with itself and the environment.

Fig. 1.15: Typical motional timescales for physical processes.

Fig. 1.16: Periodic boundary condition in Two Dimensions

Fig. 1.17: Thermodynamic cycle for Enzyme, Inhibitor at various sovant parameters and change in free energy (ΔG) under vaccuo and water conditions under E-I complex condition.

Fig. 1.18: Drug molecule docked into the targeted protein inhibitor site and orientation of drug molecule.

Fig. 3.1: Flowchart of Gromacs

Fig. 3.2: LogP graph has been constructed between predicted logP and experimental logP for standardization of Molinspiration algorithms for calculated drug molecules.

Fig. 3.3: 2-D and 3D structural model graph for volume analysis by molinspiration calculation (www.molinspiration.com)

Fig. 4.1.1: General reaction of HIV-1 PR

Fig. 4.1.2: Multiple sequence alignment of HIV-1 PR with different HIV-1 PR mutants showing high conserve regions in star (·) and deleted regions in dashes (-), highlighted region share denotes the conserved active site residues

Fig. 4.1.3: Dendogram of HIV-1 PR and its family of HIV-1 PR Mutants

Fig. 4.1.4: Shows from the MD simulation of HIV-1 PR, the time evolution of RMSD

Fig. 4.1.5: Fluctuation of Amino acids of HIV-1 PR at 5000ps

Fig. 4.1.6: Ramachandra plot of refined crystallographic HIV-1 PR

Fig. 4.1.7: HIV-1 PR Overall model quality (Left) and Local model quality (Right)

Fig. 4.1.8: Secondary structure of HIV-1 PR

Fig. 4.1.9: Active site amino acids (Red sticks) of HIV-1 PR
Fig. 4.1.10: Electrostatic surface with active site residues and the extreme left with electrostatic potentials proposed binding site (Blue + charge and Red – charge). These figures were generated with Pymol (DeLano, 2002).

Fig. 4.1.11: A strong hydrogen bonding of Tipranavir (orange) with HIV-1 PR (magenta) Active site residues (Dark Cyan)

Fig. 4.1.13: A strong hydrogen bonding of Ritonavir (Magenta) with HIV-1 PR (orange) Active site residues (Yellow)

Fig. 4.1.14: A strong hydrogen bonding of Nelfinavir (Orange) with HIV-1 PR Active site residues (Blue)

Fig. 4.1.15A: TP analog structural formulae of TP-01 to TP-05
Fig. 4.1.15B: TP analog structural formulae of TP-06 to TP-10
Fig. 4.1.15C: TP analog structural formulae of TP-11 to TP-15
Fig. 4.1.15D: TP analog structural formulae of TP-16 to TP-20
Fig. 4.1.15E: TP analog structural formulae of TP-21 to TP-25
Fig. 4.1.15F: TP analog structural formulae of TP-26 to TP-30
Fig. 4.1.15G: TP analog structural formulae of TP-31 to TP-35
Fig. 4.1.15H: TP analog structural formulae of TP-36 to TP-40
Fig. 4.1.15I: TP analog structural formulae of TP-41 to TP-45
Fig. 4.1.15J: TP analog structural formulae of TP-46 to TP-50

Fig. 4.1.15: A strong hydrogen bonding of , Atazanavir, Fosamprenavir, Tipranavir, Darunavir with HIV-1 PR Active site residues (Yellow)

Fig. 4.1.16: Docking interaction of TP best analog TP-18(Magenta) with HIV-1 PR (Green) active site residues (Pale Green)

Fig. 4.1.17: Docking interaction of TP best analog TP-21 (Magenta) with HIV-1 PR (Green) active site residues (Light Blue)

Fig. 4.1.18: Docking interaction of TP best analog TP-10 (Magenta) with HIV-1 PR (Green) active site residues (Light Blue)

Fig. 4.1.19: Docking low interaction of TP best analog TP-16 (Magenta) with HIV-1 PR (Green) active site residues (Light Blue)

Fig. 4.1.20: Docking interaction of TP best analog TP-5 (Magenta) with HIV-1 PR (Green) active site residues (Light Blue)

Fig. 4.2.1: HIV-1 IN catalytic reaction
Fig. 4.2.2: Multiple sequence alignment of HIV-IN with a series of mutant HIV-1 IN along with Homo sapiens golgin A2 family protein (*=denote the conserve residues).

Fig. 4.2.3: Phylogenic trees based on the multiple alignment of HIV-1 IN mutants and Human golgin A2 family enzyme

Fig. 4.2.4: The refined crystal structure of HIV-1 IN showing different helices (Purple in color) and sheets (Yellow) and loops (Tan) (http://delsci.com/rel/099)

Fig. 4.2.5: RMSD graph of HIV-1 IN and Time (X-axis) Vs RMSD-nm (Y-Axix).

Fig. 4.2.6: RMS Fluctuion of amino acid residues of HIV-1 IN

Fig. 4.2.7 Ramachandran plot of HIV-1 IN

Fig. 4.2.8: ProSA-web Z-scores of HIV-1 IN, determined by X-ray crystallography (light blue) or NMR spectroscopy (dark blue) with respect to their length.

Fig. 4.2.9 Secondary structural elements of HIV-1 IN analyzed from PDBSUM (http://www.ebi.ac.uk/thorontsrv/databases/pdbsum/)

Fig. 4.2.10: The active site residues of HIV-1 IN. The zoomed area obviously shows the 3 active site amino acids (stick representation, Orange). (http://delsci.com/rel/099)

Fig. 4.2.11: Electrostatic analysis of HIV-1 integrase, blue color denote the +ve amino acids and red color denote –ve amino acids regions, higalted area shows the location of the active site amino acids. The images in this Figure were generated with Pymol (DeLano, 2002).

Fig. 4.2.12A,B: Inhibitors Raltegravir and Elvitegravir Binding interaction with HIV-1 IN active site amino acids

Fig. 4.2.13: Autodock Interaction of EL analog EL-20 (tv-Blue) with active site (Orange) of HIV-1 IN (pale cyan)

Fig. 4.2.14 Autodock Interaction of EL analog EL-1 (tv-Blue) with active site (Orange) of HIV-1 IN (pale cyan)

Fig. 4.2.15: Autodock Interaction of EL analog EL-46 (tv-Blue) with active site (Orange) of HIV-1 IN (pale cyan)

Fig. 4.2.16: Autodock Interaction of EL analog EL-18 (tv-Blue) with active site (Orange) of HIV-1 IN (pale cyan)

Fig. 4.2.17: Autodock Interaction of EL analog EL-39 (tv-Blue) with active site (Orange) of HIV-1 IN (pale cyan)

Fig. 4.2.17.A EL analogs structural formulae of EL-01 to EL-05
Fig. 4.2.17.B EL analogs structural formulae of EL-5 to EL-10
Fig. 4.2.17.C EL analogs structural formulae of EL-11 to EL-15
Fig. 4.2.17.D EL analogs structural formulae of EL-16 to EL-20
Fig. 4.2.17.E EL analogs structural formulae of EL-21 to EL-25
Fig. 4.2.17.F EL analogs structural formulae of EL-26 to EL-30
Fig. 4.2.17.G EL analogs structural formulae of EL-31 to EL-35
Fig. 4.2.17.H EL analogs structural formulae of EL-35 to EL-40
Fig. 4.2.17.I EL analogs structural formulae of EL-41 to EL-45
Fig. 4.2.17.J EL analogs structural formulae of EL-46 to EL-50

Fig. 4.3.1: Schematic illustration of Exonucloytic Activity of RT

Fig. 4.3.2: Multiple sequence alignment of HIV-1 RT with different forms of HIV-1 RT mutants showing conserver regions in star (*) and deleted regions (-).

Fig. 4.3.3: Dendogram of HIV-RT and its family of HIV-1 RT mutants

Fig. 4.3.4: Optimized HIV-1 RT model

Fig. 4.3.5: RMSD fluctuation of HIV-1 RT from Gromacs

Fig. 4.3.6: Root mean square fluctuation of HIV-1 RT amino acids at 5000ps

Fig. 4.3.7: Ramachandran plot of optimized HIV-1 RT

Fig. 4.3.8: Overall Quality of refined HIV-1 RT and Local quality of refined HIV-1 RT through PROSA-web plots

Fig. 4.3.9: Secondary structure of HIV-1 RT

Fig. 4.3.10: Active site amino acids of HIV-1 RT

Fig. 4.3.11: Electrostatic surface with active site residues and the extreme left with electrostatic potentials proposed binding site (Blue + charge and Red – charge). These figures were generated with Pymol (DeLano, 2002).

Fig. 4.3.12A-F: Docking Interaction of HIV-1 RT Nucleoside analogs with HIV-1 RT active site amino acids (Yellow sticks)

Fig. 4.3.13A-D: Docking interaction of HIV-1 RT Non-nucleoside inhibitors of HIV-1 RT activesite amino acids (Yellow sticks)

Fig. 4.3.14: Docking interaction of Adefovir with HIV-1 RT active site amino acids (yellow sticks)

Fig. 4.3.15A: AV analog structural formulae of AV-1 to AV-5

Fig. 4.3.15B: AV analog structural formulae of AV-6 to AV-10

Fig. 4.3.15C: AV analog structural formulae of AV-11 to AV-15

Fig. 4.3.15D: AV analog structural formulae of AV-16 to AV-20
Fig.4.3.15E: AV analog structural formulae of AV-21 to AV-25
Fig.4.3.15F: AV analog structural formulae of AV-26 to AV-30
Fig.4.3.15G: AV analog structural formulae of AV-31 to AV-35
Fig.4.3.15H: AV analog structural formulae of AV-36 to AV-40
Fig.4.3.15I: AV analog structural formulae of AV-41 to AV-45
Fig.4.3.15J: AV analog structural formulae of AV-46 to AV-50
Fig.4.3.16: Docking interaction of AV analog AV-12 (Magenta) with HIV-1 RT Active site amino acids (Yellow sticks)
Fig.4.3.17: Docking interaction of AV analog AV-19 (Magenta) with HIV-1 RT Active site amino acids (Yellow sticks)
Fig.4.3.18: Docking interaction of AV analog AV-35 (Magenta) with HIV-1 RT Active site amino acids (Yellow sticks)
Fig.4.3.19: Docking interaction of AV analog AV-16 (Magenta) with HIV-1 RT Active site amino acids (Yellow sticks)
Fig.4.3.20: Docking interaction of AV analog AV-50 (Magenta) with HIV-1 RT Active site amino acids (Yellow sticks)