List of Tables

1.1 Curie temperature of group-III-VI-II-VI and group IV doped semiconductor clusters ... 9

3.1 The bond length of (Ge)$_n$, n = 1-14 clusters .. 63

3.2 The binding energy per atom (B.E./A), Dissociation energy (DE) and second difference of energy Δ^2E for Ge$_n$TM (TM = Cr, Mn, Co, Ni). The positive and negative signs represents energy gain and loss respectively. ... 67

3.3 The total spin magnetic moment of the Ge$_n$Cr clusters, μ_{Cr} is the local magnetic moment on Cr atom; and μ_{3d}, μ_{4s} and μ_{4p} are magnetic moments of the 3d, 4s, 4p states of Cr atom respectively. μ_{ind} is the maximum induced magnetic moment on nearest Ge atoms. 87

3.4 The Total magnetic moment μ_{total}, μ_{3d}, μ_{4s} and μ_{4p} are the magnetic moments of the 3d, 4s, 4p states of Mn atom respectively. μ_{3d} and Q_{3d} are the Local magnetic moment and charge of Mn atom. (δ_1) and (δ_2) are the spin-up and spin-down gaps. .. 89

3.5 The Total magnetic moment μ_{total}, μ_{3d}, μ_{4s} and μ_{4p} are the magnetic moments of the 3d, 4s, 4p states of Co atom respectively. μ_{Co} and Q_{Co} are the Local magnetic moment and charge of Co atom. (δ_1) and (δ_2) are the spinup and spindown gaps ... 91

4.1 Magnetic moments (MM) of single TM atoms and TM-TM bond length with ferromagnetic (FM) and antiferromagnetic (AFM) interactions (in Å) ... 102

4.2 Average C-C and C=C bond lengths (in Å) for all fullerene cages when encapsulated with 3d-TM .. 104
4.3 The cohesive energy (ΔE) of TMs encapsulated inside small fullerene cages. The negative value of ΔE corresponds to unstable TM encapsulated inside the cage. 104

4.4 The magnetic moments at TM site inside C_{20} and C_{28} cages, μ_{TM}, and the individual contributions of 3d, 4p, 4s orbitals of TM atoms, μ_{3d}, μ_{4p}, and μ_{4s}, are tabulated respectively. 115

4.5 The magnetic moments at TM site inside C_{32} and C_{36} cages, μ_{TM}, and the individual contributions of 3d, 4p, 4s orbitals of TM atoms, μ_{3d}, μ_{4p}, and μ_{4s}, are tabulated respectively. 116

4.6 Average C-C and C=C bond lengths (in Å) for all fullerene cages when encapsulated with 3d-TM. ... 117

5.1 The bond length and cohesive energy of O_2, N_2, ZnO, ZnC and ZnN molecules. ... 130

5.2 The formation energies ($E_{Formation}$) in eV of $Zn_nO_{n-j}C$ clusters for $n = 1-12, 16$. ... 135

5.3 Total magnetic moment per C atom (μ_{total}/C) and average local magnetic moments of interstitial C dopants and of adjacent O, Zn atoms bonded to C dopants in pure and substitutionally doped ZnO clusters. 139

5.4 The formation energy, Zn-N and Zn-O bond length of singly N doped $(ZnO)_n$ clusters. .. 148

6.1 The bond length and cohesive energy of O_2, ZnC, ZnO and ZnN molecules. ... 168

6.2 The binding energy per ZnO unit for C:N, B:N and B:C doped $(ZnO)_n$ clusters. .. 185