CONTENTS

Chapter 1

Synthesis, computational study and glycosidase inhibitory activity of polyhydroxylated conidine alkaloids - a bicyclic iminosugar

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Introduction and Literature Survey for Conidine and Related Iminosugars</td>
<td></td>
</tr>
<tr>
<td>1.1.1</td>
<td>Introduction to iminosugars/azasugars</td>
<td>2</td>
</tr>
<tr>
<td>1.1.1.1</td>
<td>Classification of iminosugars</td>
<td>4</td>
</tr>
<tr>
<td>1.1.1.1.1</td>
<td>Monocyclic iminosugars</td>
<td>4</td>
</tr>
<tr>
<td>1.1.1.1.2</td>
<td>Bicyclic iminosugars</td>
<td>7</td>
</tr>
<tr>
<td>1.1.1.2</td>
<td>Biological Activity and therapeutic applications of iminosugars</td>
<td>11</td>
</tr>
<tr>
<td>1.1.1.3</td>
<td>Glycosidase mechanism</td>
<td>15</td>
</tr>
<tr>
<td>1.1.1.4</td>
<td>Conidine iminosugars/azetidine iminosugars</td>
<td>18</td>
</tr>
<tr>
<td>1.1.1.4.1</td>
<td>Reported methods for the synthesis</td>
<td>19</td>
</tr>
<tr>
<td>B</td>
<td>Synthesis of conidine iminosugars</td>
<td></td>
</tr>
<tr>
<td>1.2.1</td>
<td>Introduction</td>
<td>31</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Present Work</td>
<td>31</td>
</tr>
<tr>
<td>1.2.2.1</td>
<td>Retrosynthetic analysis</td>
<td>31</td>
</tr>
<tr>
<td>1.2.2.2</td>
<td>Synthesis of D-glucose derived β-amino esters</td>
<td>32</td>
</tr>
<tr>
<td>1.2.2.3</td>
<td>Synthesis of conidine iminosugars 34a and 34b</td>
<td>35</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Experimental Section</td>
<td>53</td>
</tr>
<tr>
<td>C</td>
<td>Conformational Studies of conidine iminosugars</td>
<td></td>
</tr>
<tr>
<td>1.3.1</td>
<td>Conformations of 34a and 34b using 1H NMR information</td>
<td>65</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Conformations of 34a and 34b using Density Functional Theory (DFT) Calculations</td>
<td>68</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Computational Method</td>
<td>84</td>
</tr>
<tr>
<td>D</td>
<td>Glycosidase Inhibitory Activity of conidine iminosugars</td>
<td></td>
</tr>
<tr>
<td>1.4.1</td>
<td>α-Glycosidase Inhibition</td>
<td>86</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Molecular Docking</td>
<td>87</td>
</tr>
<tr>
<td>1.4.3</td>
<td>α-Amylase Inhibition</td>
<td>89</td>
</tr>
<tr>
<td>1.4.4</td>
<td>Murine Pancreatic, Liver and Intestinal Glucosidase Inhibition</td>
<td>89</td>
</tr>
<tr>
<td>1.4.5</td>
<td>Experimental Section</td>
<td>90</td>
</tr>
<tr>
<td>1.4.6</td>
<td>Conclusions</td>
<td>93</td>
</tr>
<tr>
<td>1.4.7</td>
<td>References and notes</td>
<td>94</td>
</tr>
</tbody>
</table>

Chapter 2

Proline Derived Ion-tagged Organocatalysts in Asymmetric Aldol Reaction

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Introduction to Asymmetric Organocatalysis</td>
<td></td>
</tr>
<tr>
<td>2.1.1</td>
<td>Introduction</td>
<td>104</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Asymmetric Organocatalysis</td>
<td>109</td>
</tr>
</tbody>
</table>
Section B

Introduction to direct asymmetric aldol reaction and ion-tagged proline derivatives

- 2.2.1 Direct Asymmetric Aldol Reactions Catalyzed by Proline and its Derivatives 122
- 2.2.2 Organocatalytic Reactions in Aqueous Media 129
- 2.2.3 Multiphasic homogeneous catalysis 129
- 2.2.4 Ion-tagged Catalysts and “Electrosteric” Activation 134
- 2.2.5 Ion-tagged organocatalysts 137
- 2.2.6 Direct Asymmetric Aldol Reactions catalyzed by Ion-tagged Organocatalysts 144

Section C

A New Robust and Efficient Ion-Tagged Proline Catalyst Carrying an Amide Spacer, for the Asymmetric Aldol Reaction

- 2.3.1 Synthesis of Ion-Tagged Proline Catalyst with an Amide Spacer 152
- 2.3.2 Ion-Tagged Proline Catalyst with an Amide Spacer for the asymmetric aldol reaction 166
- 2.3.3 Conclusions 173
- 2.3.4 Experimental Section 174
- 2.3.5 References and Notes 184

Chapter 3

Proline Derived Ion-tagged Organocatalysts in Asymmetric Mannich Reaction

Section A

Introduction to Mannich reaction

- 3.1.1 Introduction 197
- 3.1.2 Direct asymmetric three-component Mannich reactions 199
- 3.1.3 Transition states for proline-catalyzed Mannich reaction 200
- 3.1.4 Syn-selective approaches 201
- 3.1.5 Anti-selective approaches 206

Section B

Design and synthesis of ion-tagged proline derivatives

- 3.2.1 Introduction to ion-tagged proline derivatives 211
- 3.2.2 Synthesis of ion-tagged proline derivatives 215

Section C

Ion-Tagged Proline Catalyst for the asymmetric Mannich reaction

- 3.3.1 Aldol reactions 232
- 3.3.2 Mannich reactions 233
- 3.3.3 Conclusions 243
- 3.3.4 Experimental Section 244
- 3.3.5 References and Notes 256

Abstract

260
OPTIMISM IS THE FAITH THAT LEADS TO ACHIEVEMENT. NOTHING CAN BE DONE WITHOUT HOPE AND CONFIDENCE.

HELEN KELLER