TABLE OF CONTENTS

Page No.

List of Tables i-i
List of Figures iv-\v
Abbreviations vi-vii
Abstract viii-\ix

CHAPTER-1: INTRODUCTION

1.1 Synthetic plastic and the environment 1
1.2 Bioplastic: Benefits and Limitations 2
1.3 Biowaste as substrate for PHA production 4

CHAPTER-2: REVIEW OF LITERATURE

2.1 Plastic waste: An environmental issue 6
2.2 Bioplastic 7
2.3 Polyhydroxyalkanoates (PHAs) 8
2.4 PHA biosynthesis 11
 2.4.1 Biosynthetic pathway in *Ralstonia eutropha* 12
 2.4.2 Biosynthetic pathway in *Rhodopseudomonas rubrum*........ 13
 2.4.3 Biosynthetic Pathway in Pseudomonas group I 14
 2.4.4 Biosynthetic pathway in Pseudomonas group II 14
2.5 Homopolymer vs Copolymer .. 15
2.6 Biowaste as cheap and renewable substrate 16
 2.6.1 Waste management .. 17
 2.6.2 Anaerobic digestion 18
 2.6.3 Steps involved in anaerobic digestion 18
 2.6.4 Anaerobic Digestion and PHA production 20
 2.6.5 Potential substrates for PHA production 20
2.7 PHA producing microorganisms 24
 2.7.1 *Alcaligenes* and *Ralstonia* 28
 2.7.2 *Pseudomonas* ... 29
 2.7.3 *Halofex* .. 29
 2.7.4 Recombinant *Escherichia coli* 30
 2.7.5 *Bacillus*: Future PHA producer 31
 2.7.6 PHA production by mixed microbial cultures (MMCs) 34
2.8 Genomic status of PHA biosynthesis 36
CHAPTER-3: MATERIALS AND METHODS

3.1 Microbial Cultures
3.1.1 Hydrolytic strains
3.1.2 Polyhydroxyalkanoate (PHA) producing strain

3.2 Chemicals

3.3 Gases

3.4 Microbial growth medium

3.5 Feed materials
3.5.1 Sugars solution
3.5.2 Biowaste

3.6 Metabolic characterization of microbes

3.7 Determination of whole cell protein by Lowry’s method

3.8 Estimation of glucose

3.9 Hydrolysis of waste
3.9.1 By undefined hydrolytic culture
3.9.2 By defined hydrolytic culture

3.10 Growth curve of microbial cultures

3.11 PHB production by pure cultures on synthetic media

3.12 PHB production by pure cultures on hydrolysed biowaste
3.12.1 With undefined mixed hydrolytic culture
3.12.1.1 Effect of CEH concentration
3.12.2 With defined mixed hydrolytic culture
3.12.2.1 Effect of CEH concentration
3.12.2.2 Effect of C source supplementation
3.12.2.3 Effect of inoculum size
3.12.2.4 Effect of shaking

3.13 PHA production by mixed cultures (MCs)
3.13.1 On synthetic media
3.13.2 On hydrolyzed biowaste
3.13.2.1 Effect of Incubation period
3.13.2.2 Effect of mixed hydrolytic cultures

3.14 Up-scaling of the PHA production

3.15 Effect of HV precursor on PHA copolymer production

3.16 PHB production from residual culture medium following hydrogen production: Two stage process

3.17 PHA analysis
3.17.1 PHA standard preparation
3.17.1.1 Reagents required
3.17.1.2 Preparation of stock solution
3.17.1.3 Preparation of standard
3.17.1.4 Protocol
3.17.2 Propanolysis of bacterial dry cell extract
3.17.3 Gas chromatography (GC)
CHAPTER-4: RESULTS

4.1 Metabolic characteristics of strains
4.2 Growth curve of PHB producing strains on hydrolyzed Pea-shell slurry (PSS)
4.3 PHA production by pure cultures on synthetic media
 4.3.1 Effect of glucose concentration
4.4 Optimization of PHA extraction
4.5 PHB production by pure cultures on hydrolyzed biowaste
 4.5.1 With undefined mixed hydrolytic culture
 4.5.1.1 Effect of incubation period
 4.5.1.2 Effect of CEH as N source supplement
 4.5.2 With defined mixed hydrolytic culture
 4.5.2.1 Effect of CEH as N source supplement
 4.5.2.2 Effect of C source supplementation
 4.5.2.3 Effect of inoculum size
 4.5.2.4 Effect of shaking
4.6 PHA production by mixed culture
 4.6.1 On synthetic media
 4.6.2 On hydrolyzed waste
 4.6.3 Effect of mixed hydrolytic culture MHC2
4.7 Up-scaling of the PHA production
4.8 Effect of HV precursor on copolymer production
4.9 PHB production from residual culture following hydrogen production: Two stage process

CHAPTER-5: DISCUSSION

BIBLIOGRAPHY

APPENDICES

Appendix 1
Appendix 2
Appendix 3

PUBLICATIONS