Appendix A
Appendix A: A Sample of ESP Tests:

CARE OF CHILDHOOD CANCER SURVIVORS

Cancers are rare in childhood. Nevertheless, the problem of caring for adult survivors of cancer is of great – and growing – importance to health care providers and to society in general. Malignancies develop in only one in 600 youngsters from birth to 15 years of age. Compared with the lifetime risk of cancer, this incidence represents only 1% of affected persons. Even when cases diagnosed during the adolescent years (through age 21) are added, the incidence during the first two decades of life still constitutes only about 2% of all diagnosed malignancies.

However, more children and adolescents than ever before are being cured of cancer, thanks to aggressive use of multimodal therapy – multiple chemotherapeutic agents together with surgery and radiation. Some years ago, we estimated that in the near future, one in every 1000 young adults would be a survivor of malignant disease in childhood or adolescence. The estimate was based on the prediction, since borne out, that 60% to 70% of those treated would be cured and could be expected to assume an adult place in the society.

Although cures of large numbers of children have been possible only since the early 1970s, so that many survivors have not yet been followed for long periods after their treatment with modern regimens, much is already known about the potential for delayed effects. Children reaching adulthood after cancer therapy may have reduced physical stature because of the treatment they received – primarily because of radiation therapy, which retards the growth of normal tissues as well as that of malignant tumors.

Choose a, b, c, or d, which best completes each item.

- The rate of 2% at the end of the first paragraph indicates that
 a. two out of every hundred of the population develop malignancies
 b. the rate of malignancy risk for young people is twice as much as that for children
 c. two out of every hundred children suffer from malignant cancer
 d. the risk of malignancy is very low for young people

- Multimodal therapy has
 a. been successful in curing children of cancer
 b. been the cause of some malignant diseases in children
 c. raised the mortality rate to 70%
d. eliminated all kinds of malignancy in children

- Childhood treatment of cancer
 a. removes all risks of later malignancies
 b. anticipates a prosperous life for the individual
 c. creates better regimens for the affected tissues
 d. may be followed by later problems for the individual

- One of the side-effects of childhood treatment of cancer may be
 a. accelerated growth
 b. growth retardation
 c. malignant tumors
 d. normal tissues

NEUROPSYCHOLOGICAL IMPAIRMENT AND SYSTEMIC AIDS

Even before controlled neuropsychological studies had been conducted, there were six reasons to suspect that organic mental changes could at least occasionally occur before physical signs or symptoms of HIV infection. First, numerous case reports indicated that some HIV-infected adults experienced a subjective sense of mental slowing, forgetfulness, apathy, lethargy, social withdrawal, avoidance of complex tasks, and personality change before the development of AIDS. Although these symptoms at first glance appeared to be purely psychological, as in an adjustment disorder with depressed mood, a more thorough clinical evaluation suggested a “subcortical dementia”. Less subtly, some HIV-infected patients presented initially with acute psychotic, delirious, amnesic, depressive, or manic episodes, raising the observation that, like syphilis in decades past, HIV-induced organic mental disorders could be considered “the great imitator”.

Second, studies indicated that HIV entered the nervous system shortly following infection. For example, McArthur et al. reported abnormalities and HIV in the CSF of asymptomatic homosexual men known to have seroconvert 6 to 24 months previously. The early presence of HIV, pleocytosis, and elevated protein in the spinal fluid combined with isolation of HIV from neural tissue strongly suggested that HIV could involve the brain before there were any physical manifestations of disease. This possibility was given further support by numerous reports of HIV-specific antigens and immunoglobulins in the spinal fluids of both symptomatic and asymptomatic infected patients.
Third, HIV-infected children manifested a delay in reaching motor or intellectual milestones. His developmental lag followed by a profound regression did not seem directly related to concomitant physical illnesses, suggesting that HIV independently affected the CNS.

Fourth brain abnormalities on CT, magnetic resonance imaging (MRI), and EEG were noted in patients with AIDS and AIDS-related complex who did not have opportunistic infections or tumors in the CNS. Notable atrophy with enlarged ventricles on CT, scattered parenchymal lesion with calcification on MRI, and slow alpha rhythms and diffuse theta waves on EEG suggested that an insidious process may have preceded the development of systemic symptoms.

Choose a, b, c, or d which best completes each items.

- **Forgetfulness, lethargy, and avoidance of complex tasks**
 e. are the causes of AIDS in psychotic patients
 f. could be due to organic mental changes in AIDS suspects
 g. are symptoms and physical signs of HIV infection
 h. could change the personality of AIDS patients

- **According to the passage, HIV**
 a. was originally thought to be like syphilis
 b. is only a common state of subcortical dementia”
 c. causes patients to become imitators
 d. causes both psychological and physical disorders

- **According to the studies mentioned in the third paragraph, HIV**
 a. affects the brain before any physical signs appear
 b. physical symptoms usually cause mental disorders
 c. physical manifestations are the concern of the practitioners
 d. is a normal disease with some abnormal symptoms

- **The developmental lag in children**
 a. could indicate HIV infection
 b. causes HIV infection
 c. follows all kinds of physical illnesses
 d. Affects the central nervous system

- **Brain abnormalities in patients with no opportunistic infections or tumors in the CNS can be detected by**
 a. CT scan
 b. EEG
 c. magnetic resonance imaging
 d. all of the above