CONTENTS

ABSTRACT

LIST OF FIGURES

LIST OF TABLES

ABBREVIATIONS

NOTATIONS

CONTENTS

1 INTRODUCTION AND MOTIVATION

1.1 General Watermarking System

1.2 Motivation

1.3 Research Objectives

1.4 Summary of Contributions

1.5 Organization of Thesis

2 WATERMARKING SYSTEM: QUALITY EVALUATION CRITERIA AND STATE OF ART

2.1 Classification of Image Watermarking

2.1.1 Blind and Non-blind Image Watermarking

2.1.2 Spatial and Frequency Domain Image Watermarking

2.1.3 Visible and Invisible Image Watermarking

2.1.4 Source Based and Application Based Watermarking

2.2 Watermarking Quality Evaluation Criteria

2.2.1 Imperceptibility or Transparency

2.2.2 Robustness

2.2.3 Payload

2.2.4 Security
2.2.5 Complexity .. 16
2.3 Mathematical Background and modelling 16
 2.3.1 Transforms ... 16
 2.3.1.1 Discrete Wavelet Transform (DWT) 16
 2.3.1.2 Discrete Cosine Transform (DCT) 19
 2.3.1.3 Discrete Fourier Transform (DFT) 20
 2.3.1.4 Singular Value Decomposition (SVD) 21
 2.3.1.5 Fast Walsh Hadamard Transform (FWHT) 22
 2.3.2 Multiobjective Evolutionary Optimizer (MEO) 23
 2.3.3 Security Implementations 26
 2.3.3.1 Scrambling Methods 26
 2.3.3.2 Key Generations Logics 30
 2.3.3.3 Image Partition Merging Scheme (IPMS) 31
 2.3.3.4 Randomization 33
 2.3.4 Color Image Watermarking 34
 2.3.4.1 Need of Color Space Conversions 34
 2.3.4.2 Color Transformations 35
 2.3.4.3 RGB Color Space 36
 2.3.4.4 RGB to KLA Color Transformation 36
 2.3.4.5 RGB to YUV Color Transformation 36
 2.3.4.6 RGB to YIQ Color Transformation 37
 2.3.4.7 RGB to XYZ Color Transformation 37
 2.3.4.8 RGB to UVW Color Transformation 37
 2.3.4.9 RGB to YCgCb Color Transformation 38
 2.3.4.10 RGB to RcGcBc Color Transformation 38
 2.3.4.11 RGB to RsGsBs Color Transformation 38
 2.3.4.12 RGB to LUV Color Transformation 39
 2.3.5 Medical Image Handling Preserving ROI 39
 2.3.6 Mathematical Model 41
 2.4 Literature Review .. 44
 2.5 Watermarking Challenges and Current Trends 51

3 DESIGN ISSUES AND PROPOSED METHODOLOGY 55
 3.1 Design Issues .. 55
 3.1.1 Capacity Versus Robustness 55
 3.1.2 Distortion and Perceptual Quality 56
 3.1.3 Uneven Distribution of Embedding Capacity 56
 3.1.4 Spatial Versus Transform Domain 56
 3.1.5 Robustness Against Actual Attack Conditions 57
 3.1.6 Human Visual System (HVS) 58
3.1.7 Conflict of Both Robustness and Imperceptibility under High Capacity

3.1.8 Time Complexity

3.2 Handling Image Watermarking Attacks

3.2.1 Pepper and Salt Noise Attack or Impulse Noise Attack

3.2.2 Poisson Noise Attack or Shot Photon Noise Attack

3.2.3 Speckle Noise Attack or Random Noise Attack

3.2.4 Gaussian Noise Addition and Gaussian Filtering Attacks

3.2.5 Mean Filtering Attack or Average Filtering Attack

3.2.6 Median Filtering and Wiener Filtering Attacks

3.2.7 Rotation, Scaling, Translation(RST) Attacks

3.2.8 Histogram Equalization and Contrast Adjustment Attacks

3.2.9 Gamma Correction Attack

3.2.10 Compression Attack

3.2.11 Sharpening and Blurring Attacks

3.2.12 Resizing and Cropping Attack

3.3 Proposed System Architecture

3.3.1 Watermark Embedding Process

3.3.2 Watermark Extraction Process

3.4 Insight into Proposed Techniques

3.4.1 Tech_Num_1: Modified LSB Insertion Based Technique

3.4.2 Tech_Num_2: DWT Based Image Watermarking

3.4.3 Tech_Num_3: Combine DWT-DCT Based Image Watermark Technique

3.4.4 Tech_Num_4: ROI Based Transform Domain Watermarking Technique for Medical Images

3.4.5 Tech_Num_5: Image Watermarking Based on DWT-DFT-SVD Domain

3.4.6 Tech_Num_6: DWT-FWHT-SVD Based Image Watermarking Robust to Noise Addition and Filtering Attacks

3.4.7 Tech_Num_7: Image Watermarking Using MEO

3.4.8 Tech_Num_8: Applying Image Watermarking to Real World Applications

3.4.8.1 Tech_Num_8.1 Biometric and Wavelet Based E-voting System

3.4.8.2 Tech_Num_8.2 Criminal Photograph Authentication System

4 SYSTEM DEVELOPMENT AND IMPLEMENTATIONS
4.1 Development Environment and Databases 77
4.2 Proposed Image Watermarking System 78
 4.2.1 Implementation of Tech_Num_1: Modified LSB Insertion Based Technique ... 78
 4.2.1.1 Watermark Embedding for Modified LSB Based Technique ... 79
 4.2.1.2 Watermark Extraction for Modified LSB Based Technique ... 80
 4.2.2 Implementation of Tech_Num_2: DWT Based Image Watermarking ... 81
 4.2.2.1 Watermark Embedding for DWT Based Image Watermarking ... 81
 4.2.2.2 Watermark Extraction for DWT Based Image Watermarking ... 82
 4.2.3 Implementation of Tech_Num_3: Combine DWT-DCT Based Watermarking Technique ... 83
 4.2.3.1 Watermark embedding in combine DWT-DCT Domain .. 83
 4.2.3.2 Watermark Extraction in Combine DWT-DCT domain ... 85
 4.2.4 Implementation of Tech_Num_4: ROI Based Watermarking Technique for Medical Images 86
 4.2.4.1 Watermark Embedding in ROI Based Technique 88
 4.2.4.2 ROI Based Watermark Extraction 89
 4.2.5 Implementation of Tech_Num_5: Image Watermarking Based on DWT-DFT-SVD Domain ... 91
 4.2.5.1 Watermark Embedding in DWT-DFT-SVD Domain .. 91
 4.2.5.2 Watermark Extraction in DWT-DFT-SVD Domain ... 93
 4.2.6 Implementation of Tech_Num_6: DWT-FWHT-SVD Based Image Watermarking Robust to Noise Addition and Filtering Attacks 94
 4.2.6.1 Watermark Embedding in DWT-FWHT-SVD Domain .. 94
 4.2.6.2 Watermark Extraction in DWT-FWHT-SVD Domain ... 95
 4.2.7 Implementation of Tech_Num_7: Image Watermarking Using MEO .. 96
 4.2.7.1 Watermark Embedding of MEO Based Technique 96
 4.2.7.2 MEO Based Watermark Extraction 98
 4.2.8 Implementation of Tech_Num_8: Applying Image Watermarking to Real World Applications 99
 4.2.8.1 Implementation of Tech_Num 8.1: Biometric and Wavelet Based E-voting System 99
 4.2.8.2 Implementation of Tech_Num 8.2: Watermarking based Criminal Authentication System 103

5 SYSTEM VALIDATION AND RESULT ANALYSIS .. 107
5.1 Performance Evaluation Parameters ... 107
 5.1.1 Perceptual Transparency .. 108
 5.1.1.1 MSE of Grey Scale Image .. 108
 5.1.1.2 Perceptual Transparency of Grey Scale Image 108
 5.1.1.3 MSE for Color Image ... 109
 5.1.1.4 Perceptual Transparency for Color Image 109
 5.1.2 Robustness ... 109
 5.1.2.1 Normalised Correlation ... 110
 5.1.3 Capacity ... 110
 5.1.4 Security ... 110
 5.1.5 Computation Time .. 111
 5.1.6 Optimization of Perceptual Quality and Robustness 111
5.2 Experimentations and Result Analysis .. 112
 5.2.1 Test Num 1: Selection of Typical Test Images From Large On-
 line Database Based on Histogram Variation 112
 5.2.2 Test Num 2: Selection of Wavelet from Wavelet Family Based
 on Time Complexity .. 115
 5.2.3 Test Num 3: Performance of Modified LSB Based Spatial Dom-
 in Technique Versus DWT based Transform Domain Technique.117
 5.2.4 Test Num 4: Simultaneous Achievement of Imperceptibility and
 Robustness(SAIR) ... 120
 5.2.5 Test Num 5: Testing for Effective Handling of ROI and RONI(EHRR)
 for Medical Images ... 123
 5.2.6 Test Num 6: Testing for Effective Handling of Color Spaces
 (EHCS) ... 125
 5.2.7 Test Num 7: Testing of Watermarking Techniques with Three
 Level Composition of Transforms 134
 5.2.8 Test Num 8: Testing of MEO based Watermarking Technique
 for Optimization of Imperceptibility and Robustness under High
 Payload Scenario ... 142
 5.2.9 Test Num 9: Tests showing high degree of robustness for at-
 tacks(HDRA) .. 148
 5.2.9.1 Robustness Test with Tech_Num_5 148
 5.2.9.2 Robustness Test with Tech_Num_6 149
 5.2.9.3 Robustness Test with Tech_Num_7 155
 5.2.10 Test Num 10: Testing with High Capacity Considerations 157
 5.2.11 Test Num 11: Applying Proposed Watermarking Technique to
 Real World Applications ... 160
 5.2.11.1 Biometric and Wavelet Based E-Voting System 160
 5.2.11.2 Watermarking Based Criminal Authentication System 162

xix