Chapter 3

EXISTENCE AND UNIQUENESS RESULTS FOR FUZZY IMPULSIVE INTEGRODIFFERENTIAL EQUATIONS

3.1 Introduction

There exists an extensive theory for neutral functional integrodifferential equations which includes qualitative behaviour of classes of such equations and applications to biological and engineering processes for details, [6; 10; 44; 79]. However, the concrete example is the radio cardiogram, where the two compartments correspond to the left and right ventricles of the pulmonary and systematic circulation. Pipes coming out from and returning into the same compartment may represent shunts, and the equation representing this model is a nonlinear neutral volterra integrodifferential equations in [16; 17; 37]. For these reasons, there has been an increasing interest in studying equations that can be described in the form

\[x'(t) = a(t)x(t) + \int_0^t k(t, s, x(s))ds + f(t, x(t)), \quad t \in J, \]

\[\Delta x|_{t=t_k} = I_k(x(t_k)), \quad k = 1, 2, 3, ..., m, \]

\[x(0) = x_0, \]
where x_t represents the history of x at t and $a : J \rightarrow E_N$ is a fuzzy co-efficient. E_N is the set of all upper semi-continuous, convex, normal fuzzy numbers with bounded α-level intervals,

$$\Delta x(t_k) = x(t_k^+) - x(t_k^-),$$

$x(t_k^+)$ and $x(t_k^-)$ denote the right limits and the left limits of $x(t)$ at $t = t_k$ respectively, $0 < t_1 < t_2 < \ldots < t_k < T$, and $f, g : J \times E_N \rightarrow E_N$ are nonlinear continuous functions.

The rest of this chapter is organized as follows: In section 3.2 we recall briefly some basic definitions and preliminary facts about multi-fuzzy number valued maps and evolution systems which will be used throughout this paper. The existence and uniqueness theorem for equation 3.1.1 and their proof is arranged in section 3.3.

Finally, in section 3.4, an example is presented to illustrate the applications of the obtained result.

3.2 Preliminaries

A fuzzy subset of R^n is defined in terms of a membership function which assigns to each point $x \in R^n$ a grade of membership in the fuzzy set. Such a membership function is denoted by

$$u : R^n \rightarrow [0, 1].$$

Throughout this paper, we assume that u maps R^n onto $[0, 1]$, $[u]^0$ is a bounded subset of R^n, u is upper semicontinuous, and u is fuzzy convex. We denote by E_n the space of all fuzzy subsets u of R^n which are normal, fuzzy convex, and upper
semicontinuous fuzzy sets with bounded supports. In particular, \(E^1 \) denotes the space of all fuzzy subsets \(u \) of \(R \).

A fuzzy number \(a \) in real line \(R \) is a fuzzy set characterized by a membership function \(\mu_a \) as

\[
\mu_a : R \rightarrow [0, 1].
\]

A fuzzy number \(a \) is expressed as

\[
a = \bigvee_{x \in R} \frac{\mu_a(x)}{x}
\]

with the understanding that \(\mu_a(x) \in [0, 1] \) represents the grade of membership of \(x \) in \(a \) and \(\bigvee \) denotes the union of \(\mu_a(x) \)

Definition 3.2.1. A fuzzy number \(a \) in \(R \) is said to be convex if for any real numbers \(x, y, z \) in \(R \) with \(x \leq y \leq z \),

\[
\mu_a(y) \geq \min\{\mu_a(x), \mu_a(z)\}.
\]

Definition 3.2.2. The height of a fuzzy set is the largest membership value attained by any point.

Definition 3.2.3. If the height of a fuzzy set equals one, then the fuzzy set is called a normal fuzzy set.

Thus, a fuzzy number \(a \) in \(R \) is called normal if the following holds:

\[
\max_\alpha \mu_a(x) = 1.
\]

Definition 3.2.4. Let \(E_N \) be the set of all upper semicontinuous convex normal fuzzy numbers with bounded \(\alpha \)-level intervals [...] this means that if \(a \in E_N \), then the \(\alpha \)-level set

\[
[a]^{\alpha} = \bigvee x \in R : a(x) \geq \alpha, 0 < \alpha \leq 1
\]
is a closed bounded interval which we denote by
\[[a]^a = [a^a_q, a^a_r], \]
and there exists a \(t_0 \in \mathbb{R} \) such that \(a(t_0) = 1 \).

Definition 3.2.5. Two fuzzy numbers \(a \) and \(b \) are called equal \(a = b \), if \(\mu_a(x) = \mu_b(x) \) for all \(x \in \mathbb{R} \). It follows that
\[a = b \iff [a]^a = [b]^a, \]
for all \(\alpha \in (0, 1] \).

Definition 3.2.6. A fuzzy number \(a \) may be decomposed into its level sets through the resolution identity
\[a = \alpha [a]^a \]
where \(\alpha [a]^a \) is the product of a scalar \(\alpha \) with the set \([a]^a\) and \(f \) is the union of \([a]^a\) with \(\alpha \) ranging from 0 to 1.

Definition 3.2.7. The support of a fuzzy set \(A \) in the universal set \(U \) is a crisp set that contains all the elements of \(U \) that have nonzero membership values in \(A \), that is
\[\text{supp}(A) = \{ x \in U; \mu_a(x) > 0 \}, \]
where \(\text{supp}(A) \) denotes the support of fuzzy set \(A \).

Hence, the support \(\Gamma_a \) of a fuzzy member \(a \) is defined, as a special case of level set, by the following:
\[\Gamma_a = \{ x : \mu_a(x) > 0 \}. \]

Definition 3.2.8. A fuzzy number \(a \) in \(\mathbb{R} \) is said to be positive if \(0 < a_1 < a_2 \) holds for the support \(\Gamma_a = [a_1, a_2] \) of \(a \); that is, \(\Gamma_a \) is in the positive real line. Similarly, \(a \) is called negative if \(a_1 \leq a_2 \leq 0 \) and zero if \(a_1 \leq 0 \leq a_2 \).
Lemma 3.2.1. [79] If \(a, b \in E_N \), then for \(\alpha \in (0, 1) \),

\[
[a + b]_{\alpha} = [a_{q} + b_{\alpha}, a_{r} + b_{\alpha}],
\]

\[
[a \times b]_{\alpha} = \min_{i} {a_{i}^{\alpha} b_{i}^{\alpha}}, \max_{i} {a_{i}^{\alpha} b_{i}^{\alpha}}, \ i, j = q, r,
\]

\[
[a - b]_{\alpha} = [a_{q} - b_{r}, a_{r} - b_{\alpha}].
\]

Lemma 3.2.2. [79] Let \([a_{q}, a_{r}]\), \(0 < \alpha \leq 1\), be a given family of nonempty intervals. If

\[
[a_{q}, a_{r}] \subset [a_{q}, a_{r}], \text{ for all } 0 < \alpha \leq \beta \text{ for all } 0 < \alpha \leq \beta. \tag{3.2.1}
\]

and

\[
[\lim_{k \to \infty} a_{q}^{\alpha}, \lim_{k \to \infty} a_{r}^{\alpha}] = [a_{q}, a_{r}], \tag{3.2.2}
\]

whenever \((\alpha_{k})\) is non decreasing sequence converging to \(\alpha \in (0, 1)\), then the family \([a_{q}, a_{r}]\), \(0 < \alpha \leq 1\), are the \(\alpha\)- level sets of a fuzzy number \(a \in E_N\); conversely if \([a_{q}, a_{r}]\), \(0 < \alpha \leq 1\), are the \(\alpha\)- level sets of a fuzzy number \(a \in E_N\), then conditions 3.2.1 and 3.2.2 hold true.

Let \(x\) be a point in \(\mathbb{R}^n\) and \(A\) be a nonempty subset of \(\mathbb{R}^n\). We define the distance \(d(x, A)\) from \(x\) to \(A\) by

\[
d(x, A) = \inf \|x - a\|, \ a \in A. \tag{3.2.3}
\]

Now, let \(A\) and \(B\) be nonempty subsets of \(\mathbb{R}^n\). We define the Hausdorff separation of \(B\) from \(A\) by

\[
dH'(B, A) = \sup d(b, A); \ b \in B. \tag{3.2.4}
\]

In general \(dH'(A, B) = dH'(B, A)\) we define the Hausdorff distance between nonempty subsets of \(A\) and \(B\) of \(\mathbb{R}^n\) by

\[
dH(A, B) = \max dH'(A, B), \ dH'(B, A). \tag{3.2.5}
\]

28
This is now symmetric in A and B. Consequently,

1. $dH(A, B) \geq 0$ with $dH(A, B) = 0$ if and only if $\bar{A} = \bar{B}$,

2. $dH(A, B) = dH(B, A)$ and

3. $dH(A, B) \leq dH(A, C) + dH(C, B),$

for any nonempty subsets of A, B and C of R^n. The Hausdorff distance (3.2.5) is a metric, the Hausdorff metric. The supremum metric d_∞ on E^n is defined by

$$d_\infty(u, v) = \sup_{\alpha} dH([u], [v]); \quad \alpha \in (0, 1]^*,$$

for all $u, v \in E^n$, and is obviously metric on E^n. The supremum metric H_1 on $C(J; E^n)$ is defined by

$$H_1(x, y) = \sup_{t \in J} d_\infty(x(t), y(t)); \quad t \in J^*,$$

for all $x, y \in C(J; E^n)$.

3.3 Existence and uniqueness results for fuzzy impulsive integrodifferential equations

In this section, we consider the existence and uniqueness of the fuzzy solution for nonlinear fuzzy impulsive integrodifferential equations

$x'(t) = a(t)x(t) + \int_0^t k(t, s, x(s))ds + f(t, x(t)), \quad t \in J, \quad t = t_k,$

$\Delta x/t=t_k = I_k(x(t_k)), \quad k = 1, 2, 3, ..., m,$

$x(0) = x_0,$

(3.3.1)
with fuzzy co-efficient \(a : J \to E_N \), initial value \(x_0 \in E_N \), inhomogeneous terms \(f : J \times E_N \to E_N \), and \(k : J \times J \times E_N \to E_N \) are continuous,

\[
\Delta x(t_k) = x(t_k^+) - x(t_k^-),
\]

\(x(t_k^+) \) and \(x(t_k^-) \) denote the right limits and the left limits of \(x(t) \) at \(t = t_k \) respectively, \(0 < t_1 < t_2 < ... < t_k < T \), and satisfy a global Lipschitz condition, i.e., there exists a finite constant \(\eta_i > 0 \) such that

\[
(H_i) \quad (i) \quad dH \left[f(s, \xi_1(s)) \right]^a, \left[f(s, \xi_2(s)) \right]^a \leq \eta_1 dH(\xi_1(s), \xi_2(s))^a
\]

and

\[
(ii) \quad dH \left[k(t, s, \xi_1(s)) \right]^a, \left[k(t, s, \xi_2(s)) \right]^a \leq \eta_1 dH(\xi_1(s), \xi_2(s))^a
\]

for all \(\xi_1(s), \xi_2(s) \in E_N \).

\((H_2) \) There exist two positive constants \(dk \) and \(dk' \), where \(k = 1, 2, ..., m \).

(i) \(\| I_k(\xi_1(t_k)) \| \leq dk \)

(ii) \(\| I_k(\xi_2(t_k)) \| \leq dk' \).

Let \(I \) be a real interval. A mapping \(x : I \to E_N \) is called a fuzzy process.

We denote

\[
[x(t)]^a = [x_q^a(t), x_r^a(t)], \quad t \in I, \quad 0 < \alpha \leq 1.
\]

The derivative \(x'(t) \in E_N \) of a fuzzy process \(x \), then

\[
[x'(t)]^a = [(x_q^a)'(t), (x_r^a)'(t)], \quad 0 < \alpha \leq 1.
\]

The fuzzy integral

\[
\int_a^b x(t) dt, \quad a, b \in I
\]

is defined by

\[
\int_a^b [x(t)]^a dt = \int_a^b x_q^a(t) dt + \int_a^b x_r^a(t) dt.
\]

Provided that the Lebesgue integrals on the right exist.
Theorem 3.3.1. Let $T > 0$, f and k satisfy a global Lipschitz condition, for every $x_0 \in E_N$, then the fuzzy impulsive integrodifferential equation has a unique solution $x \in C(J; E_N)$.

Proof. For each $\xi(t) \in E_N$, $t \in J$. Define

$$
(G_0 \xi)(t) = S(t)x_0 + \int_0^t S(t-s)k(s, r, \xi(t))drds
+ \int_{t_{k-1}}^t S(t-t_k)I_k(\xi(t_k))ds
+ \int_0^t S(t-s)f(s, \xi(s))ds,
$$

where $S(t)$ is a fuzzy number and

$$
\cdot S(t) = \cdot S^2(t), S^2(t)
= \cdot \exp \cdot \int_0^t \cdot a_i(s)ds, \exp \cdot \int_0^t \cdot a_i^{'}(s)ds.
$$

and $S_i^j(t) (i = q, r)$ is continuous. That is, there exists a constant $\eta_2 > 0$ such that $|S_i^j(t)| \leq \eta_2$ for all $t \in J$. Thus, $G_0 \xi : J \to E_N$ is continuous, and $G_0 : C(J : E_N) \to C(J : E_N)$. For $\xi_1, \xi_2 \in C(J : E_N)$

$$
dH \cdot (G_0 \xi_1)(t) = (G_0 \xi_2)(t)
= dH \cdot S(t)x_0 + \int_0^t S(t-s)K(s, r, \xi_1(t))drds + \int_0^t S(t-s)f(s, \xi_1(s))ds
+ \int_{t_{k-1}}^t S(t-t_k)I_k(\xi_1(t_k))ds
+ \int_0^t S(t-s)f(s, \xi_1(s))ds
+ \int_{t_{k-1}}^t S(t-t_k)I_k(\xi_1(t_k))ds
$$

$$
= dH \cdot S(t)x_0 + \int_0^t S(t-s)K(s, r, \xi_2(t))drds + \int_0^t S(t-s)f(s, \xi_2(s))ds
+ \int_{t_{k-1}}^t S(t-t_k)I_k(\xi_2(t_k))ds
+ \int_0^t S(t-s)f(s, \xi_2(s))ds
+ \int_{t_{k-1}}^t S(t-t_k)I_k(\xi_2(t_k))ds
$$
\[
\begin{align*}
&= dH \cdot \int_0^t S(t-s) (K(s, r, \xi_1(r)) \, dr) \, ds^\alpha + \int_0^t S(t-s) f(s, \xi_1(s)) \, ds^\alpha \\
&+ \int_{t \leq t_k} S(t-t_k) I_k(\xi_1(t_k)) \, ds^\alpha + \int_0^t S(t-s) k(s, r, \xi_2(r)) \, dr \, ds^\alpha + \int_0^t S(t-s) f(s, \xi_2(s)) \, ds^\alpha \\
&+ \int_{t \leq t_k} S(t-t_k) I_k(\xi_2(t_k)) \, ds^\alpha \\
&\leq dH \cdot \int_0^t S(t-s) (K(s, r, \xi_1(r)) \, dr) \, ds^\alpha + \int_0^t S(t-s) f(s, \xi_1(s)) \, ds^\alpha \\
&+ \int_{t \leq t_k} S(t-t_k) I_k(\xi_1(t_k)) \, ds^\alpha + \int_0^t S(t-s) k(s, r, \xi_2(r)) \, dr \, ds^\alpha + \int_0^t S(t-s) f(s, \xi_2(s)) \, ds^\alpha \\
&+ \int_{t \leq t_k} S(t-t_k) I_k(\xi_2(t_k)) \, ds^\alpha \\
&= dH \cdot S^\alpha_q(t-s) (K^\alpha_q(s, r, \xi_1(r)) \, dr) + S^\alpha_q(t-s) f^\alpha_q(s, \xi_1(s)) \\
&+ \int_{t \leq t_k} S^\alpha_q(t-t_k) I_k(\xi_1(t_k)) \, ds^\alpha + \int_0^t S^\alpha_q(t-s) K^\alpha_q(s, r, \xi_1(r)) \, dr + \int_0^t S^\alpha_q(t-s) f^\alpha_q(s, \xi_1(s)) \\
&+ \int_{t \leq t_k} S^\alpha_q(t-t_k) I_k(\xi_1(t_k)) \, ds^\alpha + \int_0^t S^\alpha_q(t-s) K^\alpha_q(s, r, \xi_2(r)) \, dr + \int_0^t S^\alpha_q(t-s) f^\alpha_q(s, \xi_2(s)) \, ds \\
&+ \int_{t \leq t_k} S^\alpha_q(t-t_k) I_k(\xi_2(t_k)) \, ds^\alpha \\
&+ \int_0^t S^\alpha_q(t-s) K^\alpha_q(s, r, \xi_2(r)) \, dr + \int_0^t S^\alpha_q(t-s) f^\alpha_q(s, \xi_2(s)) \, ds \\
&+ \int_{t \leq t_k} S^\alpha_q(t-t_k) I_k(\xi_2(t_k)) \, ds^\alpha.
\end{align*}
\]
\[
\begin{align*}
&= \max_{t} \int_{0}^{t} \left(-S^{\alpha}_{q}(t - s) \int_{0}^{s} \left(\mathcal{K}^{\alpha}_{q}(s, r, \xi_{1}(r)) dr + \mathcal{F}^{\alpha}_{q}(s, \xi_{2}(s)) \right) ds + S^{\alpha}_{q}(t - s) \mathcal{F}^{\alpha}_{q}(s, \xi_{2}(s)) \right) \left\{ -S^{\alpha}_{q}(t - t_{k}) \mathcal{I}_{k}(\xi_{2}(t_{k})) + S^{\alpha}_{q}(t - t_{k}) \mathcal{I}_{k}(\xi_{2}(t_{k})) \right\} ds \\
&\quad + \int_{0}^{t} \left(-S^{\alpha}_{r}(t - s) \int_{0}^{s} \left(\mathcal{K}^{\alpha}_{r}(s, r, \xi_{2}(r)) dr + \mathcal{F}^{\alpha}_{r}(s, \xi_{2}(s)) \right) ds + S^{\alpha}_{r}(t - s) \mathcal{F}^{\alpha}_{r}(s, \xi_{2}(s)) \right) \left\{ -S^{\alpha}_{r}(t - t_{k}) \mathcal{I}_{k}(\xi_{2}(t_{k})) + S^{\alpha}_{r}(t - t_{k}) \mathcal{I}_{k}(\xi_{2}(t_{k})) \right\} ds \\
&\quad \leq \eta_{2} \max_{t} \left(-S^{\alpha}_{q}(t - t_{k}) \mathcal{I}_{k}(\xi_{2}(t_{k})) + S^{\alpha}_{q}(t - t_{k}) \mathcal{I}_{k}(\xi_{2}(t_{k})) \right) \left\{ \mathcal{I}_{k}(\xi_{1}(t_{k})) + \eta_{2} \mathcal{I}_{k}(\xi_{1}(t_{k})) \right\} ds \\
&\quad + \eta_{2} \left\{ \mathcal{I}_{k}(\xi_{2}(t_{k})) + \eta_{2} \mathcal{I}_{k}(\xi_{2}(t_{k})) \right\} \left(-S^{\alpha}_{r}(t - t_{k}) \mathcal{I}_{k}(\xi_{2}(t_{k})) + S^{\alpha}_{r}(t - t_{k}) \mathcal{I}_{k}(\xi_{2}(t_{k})) \right) ds \\
&\quad + \eta_{2} \left\{ \mathcal{I}_{k}(\xi_{2}(t_{k})) + \eta_{2} \mathcal{I}_{k}(\xi_{2}(t_{k})) \right\} \left(-S^{\alpha}_{r}(t - t_{k}) \mathcal{I}_{k}(\xi_{2}(t_{k})) + S^{\alpha}_{r}(t - t_{k}) \mathcal{I}_{k}(\xi_{2}(t_{k})) \right) ds \\
&\quad + \eta_{2} \left\{ \mathcal{I}_{k}(\xi_{2}(t_{k})) + \eta_{2} \mathcal{I}_{k}(\xi_{2}(t_{k})) \right\} \left(-S^{\alpha}_{r}(t - t_{k}) \mathcal{I}_{k}(\xi_{2}(t_{k})) + S^{\alpha}_{r}(t - t_{k}) \mathcal{I}_{k}(\xi_{2}(t_{k})) \right) ds
\end{align*}
\]
\[\eta_2 \max_{0}^{t} (K_{q}^{\alpha}(s, r, \xi_2(r)) \, dr) + f_{q}^{\alpha}(s, \xi_2(s))^{\alpha} \]

\[- (K_{q}^{\alpha}(s, r, \xi_1(r)) \, dr) + f_{q}^{\alpha}(s, \xi_1(s))^{\alpha} \]

\[+ \eta_2 \, d \xi + \eta_2 \, d \alpha \]

\[\int_{0}^{s} (K_{r}^{\alpha}(s, r, \xi_2(r)) \, dr) + f_{r}^{\alpha}(s, \xi_2(s))^{\alpha} \]

\[- (K_{r}^{\alpha}(s, r, \xi_1(r)) \, dr) + f_{r}^{\alpha}(s, \xi_1(s))^{\alpha} \]

\[+ \eta_2 \, d \xi + \eta_2 \, d \alpha \]

\[\int_{0}^{s} (K_{q}^{\alpha}(s, r, \xi_2(r)) \, dr) + f_{q}^{\alpha}(s, \xi_2(s))^{\alpha} \]

\[- (K_{q}^{\alpha}(s, r, \xi_1(r)) \, dr) + f_{q}^{\alpha}(s, \xi_1(s))^{\alpha} \]

\[+ \eta_2 \, d \xi + \eta_2 \, d \alpha \]

\[\int_{0}^{s} (K_{r}^{\alpha}(s, r, \xi_2(r)) \, dr) + f_{r}^{\alpha}(s, \xi_2(s))^{\alpha} \]

\[- (K_{r}^{\alpha}(s, r, \xi_1(r)) \, dr) + f_{r}^{\alpha}(s, \xi_1(s))^{\alpha} \]

\[+ \eta_2 \, d \xi + \eta_2 \, d \alpha \]

\[\int_{0}^{s} f(s, \xi_1(s))^{\alpha} \quad f(s, \xi_1(s))^{\alpha} \]

\[+ \eta_2 \, d \xi + \eta_2 \, d \alpha \]

\[\int_{0}^{s} f(s, \xi_1(s))^{\alpha} \quad f(s, \xi_1(s))^{\alpha} \]

\[+ \eta_2 \, d \xi + \eta_2 \, d \alpha \]
\[
\leq \eta_1 \eta_2 (T + 1) \int_0^t dH^\ast [\xi_1(s)]^\alpha, [\xi_2(s)]^\alpha \cdot ds + \eta_2 - dk + \eta_2 - dk^l \\
\leq \eta \eta_2 \int_0^t dH^\ast [\xi_1(s)]^\alpha, [\xi_2(s)]^\alpha \cdot ds + \eta_2 - dk + \eta_2 - dk^l
\]
where \(\eta = \eta_1 (T + 1) \)

Therefore,
\[
d^\infty (G_0 \xi_1)(t), (G_0 \xi_2)(t) \nonumber \\
= \sup_{\alpha \in (0, 1]} dH^\ast [(G_0 \xi_1)(t)]^\alpha, [(G_0 \xi_2)(t)]^\alpha \\
\leq (\eta \eta_2)^{1-1} \sup_{\alpha \in (0, 1]} dH^\ast [\xi_1(s)]^\alpha, [\xi_2(s)]^\alpha \cdot ds + \eta_2 - dk + \eta_2 - dk^l \\
= (\eta \eta_2)^{1-1} d^\infty [\xi_1(s), \xi_2(s)] \cdot ds + \eta_2 - dk + \eta_2 - dk^l.
\]

\[
H_1(G_0 \xi_1, G_0 \xi_2) = \sup_{t \in J} d^\infty (G_0 \xi_1)(t), (G_0 \xi_2)(t) \\
\leq (\eta \eta_2) \sup_{t \in J} d^\infty [\xi_1(s), \xi_2(s)] \cdot ds + \eta_2 - dk + \eta_2 - dk^l \\
\leq (\eta \eta_2) TH_1(\xi_1, \xi_2) + \eta_2 - dk + \eta_2 - dk^l,
\]

we take sufficiently small \(T \),
\[
(\eta \eta_2 T) + \eta_2 - dk + \eta_2 - dk^l < 1.
\]

Here \(G_0 \) is a contraction mapping. By the Banach fixed-point theorem, fuzzy impulsive integrodifferential equation has a unique fixed point \(x \in C(J : E_N) \).

Consider the fuzzy impulsive solution of the nonlinear fuzzy integrodifferential equations
\[
x^t = 2x + 2tx(t)^2 + 2tx^2, \quad t \in J, \\
\Delta x/_{t=t_k} = I_k(x(t_k)) \\
x(0) = 2 \in E_N.
\]
The α-level set of fuzzy number 2 is

$$[2]^\alpha = [\alpha + 1, 3 - \alpha], \quad \text{for all } \alpha \in [0,1].$$

Let

$$\int_0^t K(t,s,x(s))ds = 2tx(t)^2, \quad f(t, x(t)) = 2tx(t)^2,$$

and

$$\eta_2 = 3\mathbb{T}[x_r^\alpha(t) + y_r^\alpha(t)] > 0.$$

Then the α-level set of $\int_0^t K(t,s,x(s))ds$ is

$$\int_0^t K(t,s,x(s))ds^{\alpha} = 2t x(t)^{2\alpha}$$

$$= 4[2]^\alpha[x(t)^2]^{\alpha}$$

$$= 4[\alpha + 1, 3 - \alpha][x_0^\alpha(t)^2, (x_r^\alpha(t))^2]$$

$$= 4(\alpha + 1)(x_0^\alpha(t))^2, (3 - \alpha)(x_r^\alpha(t))^2],$$

where $[x(t)]^\alpha = [x_0^\alpha(t), x_r^\alpha(t)]$ and $[2]^\alpha = [\alpha + 1, 3 - \alpha]$ for all $\alpha \in [0,1]$ and the α-level set of $f(t, x(t))$ is

$$\dot{f}(t, x(t))^{\alpha} = 2tx(t)^{2\alpha}$$

$$= 4[2]^\alpha[x(t)^2]^{\alpha}$$

$$= t\dot{x} + 1, 3 - \alpha^{-}\dot{x}_0^\alpha(t)^2, (x_r^\alpha(t))^2$$

$$= t\dot{x} + (\alpha + 1)(x_0^\alpha(t))^2, (3 - \alpha)(x_r^\alpha(t))^2, \alpha,$$

where $\dot{x}(t)^{\alpha} = \dot{x}_0^\alpha(t), x_r^\alpha(t)$ and $[2]^\alpha = [\alpha + 1, 3 - \alpha]$, for all $\alpha \in [0,1]$.

and

(i) $\|I_k(x(t_k))\| \leq dk,$

(ii) $\|I_k(y(t_k))\| \leq dk^t, \quad dk, dk^t > 0$
Then,

\[
\int_0^t K(t, s, x(t))ds^{\alpha} + f(t, x(t))^{\alpha} + I^\kappa(x(t_0)) \\
= \dot{x}(\alpha + 1)(x^\alpha_q(t))^2, (3 - \alpha)(x^\alpha_r(t))^2 + \dot{y}(\alpha + 1)(y^\alpha_q(t))^2 + dk
\]

\[
= 2\dot{x}(\alpha + 1)(x^\alpha_q(t))^2, (3 - \alpha)(x^\alpha_r(t))^2 + dk.
\]

Therefore,

\[
dH \int_0^t K(t, s, x(t))ds^{\alpha} \\
+ f(t, x(t))^{\alpha} + \dot{k}^{\alpha} + K(t, s, y(s))ds^{\alpha} + f(t, y(t))^{\alpha} + dk^{\alpha} \\
= 2\dot{x}(\alpha + 1)(x^\alpha_q(t))^2 + \dot{y}(\alpha + 1)(y^\alpha_q(t))^2, 2\dot{x}(\alpha + 1)(y^\alpha_q(t))^2,
\]

\[
(3 - \alpha)(y^\alpha_r(t))^2 + dk^{\alpha}
\]

\[
= 2t\max \dot{x}(\alpha + 1)(x^\alpha_q(t))^2 - (y^\alpha_q(t))^2 + dk^{\alpha}
\]

\[
(3 - \alpha)(x^\alpha_r(t))^2 - (y^\alpha_r(t))^2 + dk^{\alpha}
\]

\[
\leq T(3 - \alpha)\max \dot{x}(\alpha + 1)(x^\alpha_q(t))^2 - y^\alpha_q(t)/x^\alpha_q(t) + y^\alpha_q(t)/ + dk^{\alpha}
\]

\[
/\dot{x}(\alpha + 1)(x^\alpha_q(t))^2 - y^\alpha_q(t)/x^\alpha_q(t) + y^\alpha_q(t)/ + dk^{\alpha}
\]

\[
= 3T/\dot{x}(\alpha + 1)(x^\alpha_q(t))^2 - y^\alpha_q(t)/\max \dot{x}(\alpha + 1)(x^\alpha_q(t))^2 + dk^{\alpha}
\]

\[
/\dot{x}(\alpha + 1)(x^\alpha_q(t))^2 - y^\alpha_q(t)/ + dk^{\alpha}
\]

\[
= \eta_2dH \dot{x}(\alpha + 1) + dk, \dot{y}(t)^{\alpha} + dk^{\alpha}.
\]

Since \(f \) and \(g \) satisfy a global Lipschitz condition, from Theorem 3.3.1, the fuzzy impulsive integrodifferential equation has a unique fuzzy solution.