List of Tables

1.1 The chiral supermultiplets of MSSM. The SUSY partners of SM particles are indicated by putting a "tilde" on the particle symbols. The names for the chiral superpartners are obtained by prefixing "s" to name of corresponding SM particle. ... 10

1.2 The gauge supermultiplets of MSSM. The names of the gauge superpartners are obtained by suffixing "ino" to the name of corresponding particle. 11

1.3 The mass eigen states of the not yet detected particles of the MSSM, and the corresponding gauge eigenstates .. 14

3.1 Active layers in Pixel region as implemented in the **MARS** model. The second column is the zone number assigned to each part in the model. The fluxes and the doses are scored separately for each zone in simulation. 44

3.2 Active layers in the inner tracker region as implemented in **MARS** model. ... 45

3.3 Summary of the active layers in outer tracker region as implemented in current **MARS** model. Note that all the tracker endcaps except TEC9 have been coded lumped into a single zone. .. 45

3.4 Summary of the active layers in barrel HCAL region as implemented in **MARS** model. Note that layers have been grouped into four zones. 46

3.5 EndCap HCAL layers as coded in **MARS-CMS** model. Like barrel HCAL these too are interleaved between absorber layers of Cu. Since radiation environment in HE is a strong function of η, layers have been divided into sectors. Here the subscripts ls, ms, us denote lower, middle and upper sectors .. 46

4.1 The absorbed dose ($10^{-5} Gy/s$) and particle fluxes ($10^9 cm^{-2}s^{-1}$) in barrel Si tracker detector. .. 63

4.2 The absorbed dose ($10^{-5} Gy/s$) and the particle fluxes ($10^9 cm^{-2}s^{-1}$) in the endcap tracker region. .. 66

4.3 Absorbed dose (Gy/s) and particle fluxes ($cm^{-2}s^{-1}$) in the barrel calorimeter regions. ... 66

4.4 Radiation dose (Gy/s) and particle fluxes ($cm^{-2}s^{-1}$) in the endcap calorimeter regions. ... 69

5.1 Particles fluences in various pixel and tracker layers, in units of 10^9 particles per accident .. 86
5.2 Absorbed dose (Gy) and particle fluences on layers of the pixel and strip detector for one 7-TeV proton lost on TAS absorber at 19 m from IP5.

5.3 Absorbed dose (Gy) and particle fluences on layers of the pixel and strip detector for one 7-TeV proton lost on TAS absorber at 19 m from IP5.

7.1 Summary of the Data Samples Used ...106

7.1 Exclusive yields for data and MC in different bins of jet multiplicity 117

7.2 Inclusive yields for data and MC in different bins of jet multiplicity 117

7.3 Exclusive ratios with statistic and systematic uncertainties 123

8.1 Flow of events across selection criteria, for the signal and background MC samples ... 130

8.2 Effect of varying the jet energy scale on the expected number of signal and background events .. 130

8.3 Effect of changing the definition of a jet by varying the minimum p_T threshold. 131

8.4 Flow of events for pythia Z+Jet(s) sample. The numbers have been rounded off to the nearest whole number. 132

8.5 List of data samples and corresponding integrated luminosity used in the analysis. .. 132

8.6 Schematic of the control samples (H_1, H_2, H_4) used to estimate the background event yield in the signal region H_4. 138

8.7 Total number of events observed in the signal region ($JZB > 50 GeV$) on data, and corresponding background prediction and MC expectation. 144

8.8 Average lepton selection efficiencies determined using a tag-and-probe method on data and Z+Jet(s) MC simulation. 146

8.9 Ratio of the number of events with $|m(\ell \ell) - M_Z| < 20 GeV$ to the number of events with $m(\ell \ell) > 50 GeV$ for data ($L \approx 34 \text{pb}^{-1}$) and Z+Jet(s) MC simulation ($L \approx 352 \text{pb}^{-1}$). The numbers corrected for $\ell\ell$ contamination is also quoted. 148

8.10 Summary of systematic uncertainties on efficiencies on MC simulation scenarios. .. 150

8.11 Final selection efficiencies with total statistical and systematic errors, and corresponding upper limits on $(\sigma \times \text{BR} \times \text{acceptance})$ for $\ell\ell$, LM4 and LM8 scenarios. ... 151