LIST OF TABLES

Table no.

3.1 The list of Chemicals, their quality & sources.

3.2 The extinction coefficients of dyes and other compounds, their absorption maxima & concentration range of validity for Lambert Beer’s Law.

3.3 I.R. Spectra of polyaniline, emeraldine, eosin & EBT adsorbed on polyaniline & alizarin red-S adsorbed on emeraldine.

3.4 Variables for adsorption on polyaniline: Range of adsorbate concentration, temperature & particle size of the adsorbent.

4.1 Data for the adsorption of eriochrome black-T from its aqueous solution on polyaniline at 293.15 [mesh size 100-140 (110-151 μm)].

4.2 Data for the adsorption of eriochrome black-T from its aqueous solution on polyaniline at 303.15 K [mesh size 100-140 (110-151 μm)].

4.4 Data for the adsorption of eriochrome black-T from its aqueous solution on polyaniline at 313.15 K [mesh size 100-140 (110-151 μm)].

4.4 Langmuir parameters for the adsorption of EBT from its aqueous solution on polyaniline [mesh size 100-140 (110-151 μm)].

4.5 Thermodynamic quantities for the adsorption of EBT from its aqueous solution on polyaniline [mesh size 100-140 (110-151 μm)].

4.6 Kinetic data for the adsorption of EBT from its aqueous solution on polyaniline at 293.15 K [particle size 110-151 μm].

4.7 Kinetic data for the adsorption of EBT from its aqueous solution on polyaniline at 303.15 K [particle size 110-151 μm].

4.8 Kinetic data for the adsorption of EBT from its aqueous solution on polyaniline at 313.15 K [particle size 110-151 μm].

4.9 Kinetic data for the adsorption of EBT from its aqueous solution on polyaniline at 320.15 K [particle size 110-151 μm].

4.10 Parameters of empirical equation 4.26 valid for the kinetics of adsorption of EBT from its aqueous solution on polyaniline at different temperatures (particle size 110-151 μm).
4.11 Kinetic data for the adsorption of EBT from its aqueous solution on polyaniline at 303.15 K [mesh size 100-140 (110-151 µm)].

4.12 Kinetic data for the adsorption of EBT from its aqueous solution on polyaniline at 303.15 K [mesh size 50-100 (151-296 µm)].

4.13 Kinetic data for the adsorption of EBT from its aqueous solution on polyaniline at 303.15 K [mesh size 30-50 (296-599 µm)].

4.13a Parameters for empirical equation 4.26 for the kinetics of adsorption of EBT from its aqueous solution on polyaniline of different sizes at 303.15 K.

4.14 Data for the adsorption of EBT from its methanolic solution on polyaniline at 293.15 K [mesh size 100-140 (110-151µm)].

4.15 Data for the adsorption of EBT from its methanolic solution on polyaniline at 303.15 K [mesh size 100-140 (110-151µm)].

4.16 Data for the adsorption of EBT from its methanolic solution on polyaniline at 313.15 K [mesh size 100-140 (110-151µm)].

4.17 Langmuir parameters for the adsorption of EBT from its methanolic solution on polyaniline [mesh size 100-140 (110-151µm)].

4.18 Thermodynamic parameters for the adsorption of EBT from its methanolic solution on polyaniline [mesh size 100-140 (110-151µm)].

4.19 Kinetic data for the adsorption of EBT from its methanolic solution on polyaniline at 293.15 K [mesh size 110-140 (110-151µm)].

4.20 Kinetic data for the adsorption of EBT from its methanolic solution on polyaniline at 303.15 K [mesh size 110-140 (110-151µm)].

4.21 Kinetic data for the adsorption of EBT from its methanolic solution on polyaniline at 313.15 K [mesh size 110-140 (110-151µm)].

4.22 Parameters 'a' & 'n' for empirical equation (4.26) for the kinetics of adsorption of EBT from its methanolic solution on polyaniline (particle size 110-151µm).

5.1 Data for the adsorption of eosin from its aqueous solution on polyaniline at 303.15 K [mesh size 110-140 (110-151µm)].

5.2 Data for the adsorption of eosin from its aqueous solution on polyaniline at 313.15 K [mesh size 110-140 (110-151µm)].
5.3 Data for the adsorption of eosin from its aqueous solution on polyaniline at 323.15 K [mesh size 110-140 (110-151\,\mu m)].

5.4 Langmuir parameters for the adsorption of eosin on polyaniline [mesh size 110-140 (110-151\,\mu m)].

5.5 Thermodynamic quantities for the adsorption of eosin on polyaniline [mesh size 110-140 (110-151\,\mu m)].

5.6 Kinetic data for the adsorption of eosin from its aqueous solution on polyaniline at 303.15 K [particle size 110-151\,\mu m].

5.7 Kinetic data for the adsorption of eosin from its aqueous solution on polyaniline at 313.15 K [particle size (110-151\,\mu m)].

5.8 Kinetic data for the adsorption of eosin from its aqueous solution on polyaniline at 323.15 K [particle size 110-151\,\mu m].

5.9 Values of B & diffusion coefficients for the adsorption of eosin on polyaniline at different temperatures [particle size 110-151\,\mu m]

5.10 Kinetic data for the adsorption of eosin at 303.15 K on polyaniline [particle size 110-151\,\mu m]

5.11 Kinetic data for the adsorption of eosin at 303.15 K on polyaniline [particle size 151-296\,\mu m].

5.12 Kinetic data for the adsorption of eosin at 303.15 K on polyaniline [particle size 296-599\,\mu m].

5.13 Values of B and diffusion coefficients for the adsorption of eosin on different particle sizes of polyaniline at 303.15 K.

5.14 Kinetic data for the adsorption of eosin on polyaniline (0.25 g in 200 ml of 7.73 x10^{-3} M solution) at 313.15K (particle size 151-296\,\mu m)

5.15 Kinetic data for the adsorption of eosin on polyaniline (0.75g in 200 ml of 7.73 x10^{-3} M solution) at 313.15K (particle size 151-296\,\mu m)

5.16 a Effect of temperature on the rate of adsorption of eosin on polyaniline: parameters based on empirical equation 4.26 (particle size 110-151\,\mu m).

5.16 b Effect of particle size on the rate of adsorption of eosin on polyaniline: parameters based on empirical equation 4.26 at 303.15 K
6.1 Data for the adsorption of alizarin red-S from its aqueous solution on emeraldine at 303.15 K [mesh size 100-140 (110-151\(\mu\)m)].

6.2 Data for the adsorption of alizarin red-S from its aqueous solution on emeraldine at 313.15 K [mesh size 100-140 (110-151\(\mu\)m)].

6.3 Data for the adsorption of alizarin red-S from its aqueous solution on emeraldine at 323.15 K [mesh size 100-140 (110-151\(\mu\)m)].

6.4 Data for the adsorption of alizarin red-S from its aqueous solution on polyaniline at 298.15 K [mesh size 100-140 (110-151\(\mu\)m)].

6.5 Data for the adsorption of alizarin red-S from its aqueous solution on polyaniline at 313.15 K [mesh size 100-140 (110-151\(\mu\)m)].

6.6 Data for the adsorption of alizarin red-S from its aqueous solution on polyaniline at 323.15 K [mesh size 100-140 (110-151\(\mu\)m)].

6.7 Langmuir parameters for the adsorption of alizarin red-S on emeraldine and polyaniline [mesh size 100-140 (110-151\(\mu\)m)].

6.8 Freundlich parameters for the adsorption of alizarin red-S on emeraldine and polyaniline [mesh size 100-140 (110-151\(\mu\)m)].

6.9 Thermodynamic quantities for the adsorption of alizarin red-S on emeraldine and polyaniline [mesh size 100-140 (110-151\(\mu\)m)].

6.10 Kinetic data for the adsorption of alizarin red-S from its aqueous solution on emeraldine at 303.15 K [mesh size 100-140 (110-151\(\mu\)m)].

6.11 Kinetic data for the adsorption of alizarin red-S from its aqueous solution on emeraldine at 313.15 K [mesh size 100-140 (110-151\(\mu\)m)].

6.12 Kinetic data for the adsorption of alizarin red-S from its aqueous solution on emeraldine at 323.15 K [mesh size 100-140 (110-151\(\mu\)m)].

6.13 Kinetic data for the adsorption of alizarin red-S from its aqueous solution on polyaniline at 298.15 K [mesh size 100-140 (110-151\(\mu\)m)].

6.14 Kinetic data for the adsorption of alizarin red-S from its aqueous solution on polyaniline at 313.15 K [mesh size 100-140 (110-151\(\mu\)m)].

6.15 Kinetic data for the adsorption of alizarin red-S from its aqueous solution on polyaniline at 323.15 K [mesh size 100-140 (110-151\(\mu\)m)].
6.16 Values of mass transfer coefficients for the adsorption of alizarin red-S on emeraldine and polyaniline at different temperatures [particle size 110-151μm].

6.17 Kinetic data for the adsorption of alizarin red-S (0.584 x 10^{-3} M) from its aqueous solution on emeraldine at 303.15 K [particle size 110-151μm].

6.18 Kinetic data for the adsorption of alizarin red-S (1.46 x 10^{-3} M) from its aqueous solution on emeraldine at 303.15 K [particle size 110-151μm].

6.19 Kinetic data for the adsorption of alizarin red-S (2.92 x 10^{-3} M) from its aqueous solution on emeraldine at 303.15 K [particle size 110-151μm].

6.20 Kinetic data for the adsorption of alizarin red-S (1.46 x 10^{-3} M) from its aqueous solution on polyaniline at 298.15 K [particle size 110-151μm].

6.21 Kinetic data for the adsorption of alizarin red-S (2.046 x 10^{-3} M) from its aqueous solution on polyaniline at 298.15 K [particle size 110-151μm].

6.22 Kinetic data for the adsorption of alizarin red-S (2.92 x 10^{-3} M) from its aqueous solution on polyaniline at 298.15 K [particle size 110-151μm].

6.23 Values of mass transfer coefficients for the adsorption of alizarin red-S with different initial concentrations on emeraldine at 303.15 K and polyaniline at 298.15 K.

6.24 Kinetic data for the adsorption of alizarin red-S from aqueous solution on polyaniline at 298.15 K (particle size 40-100μm).

6.25 Kinetic data for the adsorption of alizarin red-S (2.046 x 10^{-3} M) from aqueous solution on polyaniline at 298.15 K (particle size 151-296 μm).

7.1 Data for the adsorption of ANS dye from its aqueous solution on polyaniline at 303.15 K (mesh size 100-140 (110-151μm)).

7.2 Data for the adsorption for ANS dye for its aqueous solution on polyaniline at 313.15 K (mesh size 100-140 (110-151μm)).

7.3 Langmuir parameters from the adsorption of ANS dye for its aqueous solution on polyaniline [mesh size 100-140 (110-151μm)].

7.4 Thermodynamic quantities from the adsorption of ANS dye for its aqueous solution on polyaniline [mesh size 100-140 (110-151μm)].

7.5 Kinetic data for the adsorption of ANS dye from its aqueous solution on polyaniline (0.1g) at 303.15 K (mesh size 100-140 (110-151μm)).
7.6 Kinetic data for the adsorption of ANS dye from its aqueous solution on polyaniline (0.1 g) at 313.15 K [mesh size 100-140 (110-151 μm)].

7.7 Kinetic data for the adsorption of ANS dye from its aqueous solution on polyaniline (0.2 g) at 303.15 K [mesh size 100-140 (110-151 μm)].

7.8 Kinetic Parameters for empirical equation 4.26 for the adsorption of ANS dye on polyaniline at two temperatures & for two adsorbent doses [mesh size 100-140 (110-151 μm)].

7.9 Data for the adsorption of HDTs dye from its aqueous solution on polyaniline at 303.15 K [mesh size 100-140 (110-151 μm)].

7.10 Data for the adsorption of HDTs dye from its aqueous solution on polyaniline at 313.15 K [mesh size 100-140 (110-151 μm)].

7.11 Data for the adsorption of HDTs dye from its aqueous solution on polyaniline at 323.15 K [mesh size 100-140 (110-151 μm)].

7.12 Langmuir parameters for the adsorption of HDTs dye from its aqueous solution on polyaniline [mesh size 100-140 (110-151 μm)].

7.13 Thermodynamic quantities for the adsorption of HDTs dye on polyaniline [mesh size 100-140 (110-151 μm)].

7.14 Kinetic data for the adsorption of HDTs dye on 50 mg of polyaniline at 313.15 K [mesh size 100-140 (110-151 μm)].

7.15 Kinetic data for the adsorption of HDTs dye on 100 mg of polyaniline at 313.15 K [mesh size 100-140 (110-151 μm)].

7.16 Kinetic data for the adsorption of HDTs dye on 200 mg of polyaniline at 313.15 K [mesh size 100-140 (110-151 μm)].

8.1 Data for the adsorption of picric acid from its aqueous solution on emeraldine at 303.15 K [mesh size 100-140 (110-151 μm)].

8.2 Data for the adsorption of picric acid from its aqueous solution on emeraldine at 310.15 K [mesh size 100-140 (110-151 μm)].

8.3 Data for the adsorption of picric acid from its aqueous solution on emeraldine at 318.15 K [mesh size 100-140 (110-151 μm)].

8.4 Langmuir parameters for the adsorption of picric acid on emeraldine [mesh size 100-140 (110-151 μm)].
8.5 Thermodynamic quantities for the adsorption of picric acid on emeraldine [mesh size 100-140 (110-151\,µm)].

8.6 Data for the adsorption of α-naphthol from its aqueous solution on emeraldine at 303.15 K [mesh size 100-140 (110-151\,µm)].

8.7 Data for the adsorption of α-naphthol from its aqueous solution on emeraldine at 310.15 K [mesh size 100-140 (110-151\,µm)].

8.8 Data for the adsorption of 1-nitroso-β-naphthol from its aqueous solution on emeraldine at 310.15 K [mesh size 100-140 (110-151\,µm)].

8.9 Langmuir parameters for the adsorption of α-naphthol on emeraldine [mesh size 100-140 (110-151\,µm)].

8.10 Thermodynamic quantities for the adsorption of α-naphthol on emeraldine [mesh size 100-140 (110-151\,µm)].

8.11 Data for the adsorption of m-cresol from its aqueous solution on emeraldine at 303.15 K [mesh size 100-140 (110-151\,µm)].

8.12 Data for the adsorption of m-cresol from its aqueous solution on emeraldine at 313.15 K [mesh size 100-140 (110-151\,µm)].

8.13 Data for the adsorption of m-cresol from its aqueous solution on emeraldine at 323.15 K [mesh size 100-140 (110-151\,µm)].

8.14 Langmuir parameters for the adsorption of m-cresol on emeraldine [mesh size 100-140 (110-151\,µm)].

8.15 Freundlich parameters for the adsorption of m-cresol on emeraldine [mesh size 100-140 (110-151\,µm)].

8.16 Thermodynamic quantities for the adsorption of m-cresol on emeraldine [mesh size 100-140 (110-151\,µm)].

9.1 Langmuir parameters and the values of corresponding thermodynamic quantities for the adsorption of different substances on polyaniline.

9.2 The values of Langmuir parameters and of corresponding thermodynamic quantities for the adsorption of different substances on emeraldine.

9.3 The values of Freundlich parameters for the adsorption of different substances on emeraldine.

(xii)
9.4 Types of possible Kinetics mechanism for the adsorption of different dyes on polyaniline (at different temperatures and particle sizes, varying the adsorbent size and concentrations of adsorbate).

9.5 Values of transfer coefficients for the adsorption of alizarin red-s on polyaniline and emeraldine at different temperatures and adsorbate concentrations (particle size 110-151μm).

9.6 Values of B and diffusion coefficients for the adsorption of eosin on polyaniline at different temperatures and particle sizes.

9.7 Values of parameters based on eq. 4.26 for the kinetics of adsorption of different dyes on polyaniline.