GENERAL REMARKS

1. 1H NMR and 13C NMR spectra are recorded on Varian Gemini 200 or Varian Unity 400 or Varian Inova 500 or Bruker Avance 300 MHz. Making a solution of samples in CCl$_4$/CDCl$_3$ (1:1), DMSO solvent using tetramethylsilane (TMS) as the internal standard unless otherwise mentioned, and are given in the δ scale. The standard abbreviations s, d, t, q, m, dd, dt, ABq, br s refer to singlet, doublet, triplet, quartet, multiplet, doublet of a doublet, doublet of a triplet, AB quartet and broad singlet respectively.

2. Infrared (IR) spectra are recorded on Perkin-Elmer Infrared–683 or 1310 with NaCl optics. Spectra were calibrated against the polystyrene absorption at 1610 cm$^{-1}$. Samples were scanned neat, KBr wafers or in chloroform as a thin film.

3. Mass spectra recorded on CEC-21-110B, Finnigan Mat 1210 or MICROMASS-7070 spectrometers operating at 70eV using a direct inlet system. If necessary, FABMS is recorded.

4. The optical rotations are measured on Jasco Dip 360 digital polarimeter.

5. Melting points are determined on a Electrothermal melting point apparatus and are uncorrected.

6. All reactions are monitored by thin layer chromatography (TLC) carried out on 0.25 mm E. Merck silica gel plates (60F-254) with UV light, iodine as probing agents. Acme (India) silica gel (finer than 200 mesh) is used for flash chromatography.

7. The reactions wherever anhydrous conditions needed are carried out under the positive pressure of nitrogen atmosphere using dry and freshly distilled solvents.

8. All solvents and reagents were purified by standard techniques. All evaporation of solvents was carried out under reduced pressure on Buchi-RE-121 rotary evaporator below 45 °C.

9. Yield reported are isolated yields of material judged homogeneous by TLC and NMR spectroscopy.

10. The names of all compounds given in the experimental section were taken from ACD/Name, Version 1.0.