CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>i</td>
</tr>
<tr>
<td>CERTIFICATE</td>
<td>ii</td>
</tr>
<tr>
<td>EXAMINATION</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xxii</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER - I INTRODUCTION

2.1 QUANTIFICATION OF CONVENTIONAL FUEL

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.1 Indian Scenario</td>
<td>6</td>
</tr>
<tr>
<td>2.1.2 Global Scenario</td>
<td>9</td>
</tr>
</tbody>
</table>

CHAPTER - II LITERATURE REVIEW

2.2 VEHICULAR QUANTIFICATION IN INDIA / ABROAD

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.1 Indian Scenario</td>
<td>9</td>
</tr>
<tr>
<td>2.2.2 Global Scenario</td>
<td>11</td>
</tr>
</tbody>
</table>

2.3 OTHER APPLICATIONS OF DIESEL ENGINES

2.4 EXHAUST CHARACTERISTICS OF CONVENTIONAL FUEL

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.1 Cetane Number</td>
<td>14</td>
</tr>
<tr>
<td>2.4.2 Aromatic Hydro Carbons</td>
<td>16</td>
</tr>
<tr>
<td>2.4.3 Sulphur Contents</td>
<td>17</td>
</tr>
<tr>
<td>2.4.4 Density and Viscosity</td>
<td>19</td>
</tr>
<tr>
<td>2.4.5 Exhaust Emissions</td>
<td>20</td>
</tr>
<tr>
<td>2.4.6 Evaporative Emissions</td>
<td>20</td>
</tr>
</tbody>
</table>
2.5 CAUSES OF EMISSIONS IN C.I. ENGINES

2.6. POLLUTANTS IN THE EXHAUST
 2.6.1 Carbonmonoxide (CO)
 2.6.2 Carbonmonoxide (HC)
 2.6.3 Nitrogen Oxides (NOx)
 2.6.4 Particulate Matter (PM)

2.7 FACTORS AFFECTING EMISSIONS
 2.7.1 Air Fuel Ratio
 2.7.2 Air Fuel Mixing
 2.7.3 Injection Timing
 2.7.4 Compression Ratio
 2.7.5 Charge Composition
 2.7.6 Injection Nozzle Configuration

2.8 NATIONAL AMBIENT AIR QUALITY STANDARDS

2.9 POLLUTANT EFFECT ON HUMAN HEALTH

2.10 OTHER EFFECTS OF DIESEL EXHAUST

2.11 NEED FOR ALTERNATE FUEL

2.12 ALTERNATIVE BIOFUEL

2.13 ADVANTAGES OF BIODIESEL

2.14 DRAWBACKS OF BIOFUEL

2.15 PRODUCTION OF BIO DIESEL
 2.15.1 Mixing of Methanol and Catalyst
 2.15.2 Reaction
CHAPTER - III MATERIALS AND METHODOLOGIES

3.1 ALTERNATIVE FUELS USED 90

3.2 BLENDS ADOPTED 90

3.3 BIODIESEL PREPARATION 91

3.4 FUEL PROPERTIES CONSIDERED 91

3.5 EXPERIMENTAL SETUP 91

3.6 PARAMETERS MONITORED 92

3.6.1 Engine Performance Parameters 92

3.6.2 Measurement Method and Selection of Instrument 92

3.6.2.1 Brake Power 92

3.6.2.2 Fuel Consumption 93

3.6.3 Exhaust 93

3.6.3 Emission Characteristics and their Measurements 93

CHAPTER- IV RESULTS AND DISCUSSIONS

4.1 EXPERIMENTS WITH NEAT DIESEL 109

4.1.1 Brake Thermal Efficiency 109

4.1.2 Brake Specific Energy Consumption 109

4.1.3 Mechanical Efficiency 110

4.1.4 Carbon Monoxide 110

4.1.5 Unburnt Hydrocarbon 110

4.2 EXPERIMENTS WITH JATROPA BIOFUEL AND ITS BLENDS 112

4.2.1 Brake Thermal Efficiency 112

4.2.2 Brake Specific Energy Consumption 112

4.2.3 Mechanical Efficiency 113

4.2.4 Carbon Monoxide 113

4.2.5 Un-burnt Hydrocarbons 114
4.3 EXPERIMENTS WITH PALM BIOFUEL AND ITS BLENDS 124
4.3.1 Brake Thermal Efficiency 124
4.3.2 Break Specific Energy Consumption 124
4.3.3 Mechanical Efficiency 125
4.3.4 Carbon Monoxide 125
4.3.5 Un-burnt Hydrocarbons 126

4.4 EXPERIMENTS WITH SOYBEAN BIOFUEL AND ITS BLENDS 136
4.4.1 Brake Thermal Efficiency 136
4.4.2 Break Specific Energy Consumption 136
4.4.3 Mechanical Efficiency 136
4.4.4 Carbon Monoxide 137
4.4.5 Un-burnt Hydrocarbons 137

4.5 EXPERIMENTS WITH SUNFLOWER BIOFUEL AND ITS BLENDS 147
4.5.1 Brake Thermal Efficiency 147
4.5.2 Break Specific Energy Consumption 147
4.5.3 Mechanical Efficiency 147
4.5.4 Carbon Monoxide 148
4.5.5 Un-burnt Hydrocarbons 148

4.6 COMPARISON OF DIFFERENT VEGETABLE OIL 158

4.7 CASE STUDIES 160
4.7.1 Case Study 1 160
4.7.2 Case Study 2 166
4.7.3 Case Study 3 166

CHAPTER - V CONCLUSIONS, LIMITATIONS AND SCOPE FOR FURTHER STUDY 169

REFERENCES 172

PAPERS PUBLISHED 186