Somatic embryogenesis and plant regeneration from cell suspension and tissue cultures of mature himalayan poplar (Populus ciliata)

Gurvinder S. Cheema
Tata Energy Research Institute, 90 Jor Bagh, New Delhi 110003, India

Received June 29, 1988 Revised version received October 17, 1988 Communicated by H. Lütt

Abstract
Somatic embryogenesis and plantlet formation were obtained from callus and cell suspension cultures of 40-year-old Himalayan Poplar (Populus ciliata Wall ex Royle). Callus and cell suspensions were obtained by transfer of inoculum of semi-organized leaf cultures, which were maintained on Murashige and Skoog (MS) medium supplemented with benzylaminopurine (BAP), to MS with 2,4-dichlorophenoxyacetic acid (2,4-D). Reduction of 2,4-D concentration during subsequent subculture of cell suspensions resulted in the formation of embryoids. These embryoids developed further only after being transferred to agar-based MS medium supplemented with BAP and naphthalene acetic acid. Loss of embryogenic potential was observed in cell suspensions after 6 subcultures. However, callus cultures retained the embryogenic potential even after repeated subcultures for more than a year. Plantlets could be successfully hardened and grown in natural outdoor conditions.

INTRODUCTION
A large number of tree species have been studied for developing methods of in vitro micropropagation (Bajaj 1986, Bonga and Durzan 1987). However, the explants used in most of these studies were seeds, seedlings or juvenile plant parts. Since the desirable characters in trees are identifiable only after a considerable period of time (at least half the rotation age and/or their maturity), these studies are not relevant to immediate use in tree improvement programmes. Success in developing propagation methods with explants from mature trees has been rather limited (Ahuja 1986, 1987; Fossard and Bourne 1976, Fossard 1978, Gupta et al. 1980, Gupta et al. 1981, Lakshmikutty et al. 1980, Mehra and Cheema 1980).

The main objective of our investigation was to explore the possibility of somatic embryogenesis for large-scale clonal multiplication in tissue and cell cultures of Himalayan poplar (Populus ciliata Wall ex Royle) using explants from selected, mature flowering trees. As embryos are discrete bipolar structures with integrated root-shoot axis, these can be used as artificial seeds for direct planting or efficient storage and delivery to the forest (Ambrazeviciute 1983, Redenbaugh et al. 1986). P. ciliata is a tree of commercial interest and is used for a variety of purposes, e.g. match, pulp and paper. It is a large sized deciduous, unisexual tree which grows over the outer range of the Himalayas between 1200 to 3000 m. In a previous study (Mehra and Cheema 1980), we have demonstrated that it is possible to have continuous in vitro multiplication of mature trees of P. ciliata using the following type of explants:

1) The twigs bearing axillary buds or the shoots possessing dormant apical buds can be induced to produce calli and redifferentiate shoots;
2) proliferation of apical buds can be stimulated to obtain multiple shoot formation; and
3) leaf disks taken from young leaves incubated in total darkness on modified Murashige and Skoog (1962) medium supplemented with BAP can give rise to a large number of shoots.

The shoots formed by any of the above methods can be rooted, suitably hardened and transferred to soil (Mehra and Cheema 1980).

The third type of cultures produced from young leaves can be maintained in semi-organized state (hereafter referred as 'leaf cultures') on MS-medium containing 2 mg/l BAP. Shoots have been regenerated by organogenesis from such tissues by transferring these to MS medium with BAP and NAA kept in light. The semi-organized cultures have been maintained in total darkness for eight years. In this paper, I report on the media and culture conditions which have induced somatic embryogenesis in these cultures.

MATERIALS AND METHODS
Semi-organized 'leaf cultures' were initiated from young leaves of female trees of P. ciliata. These trees, over forty years old, were growing in a forest near the Regional Fruit Research Station,
Mushobra, Simla, India. The details of the procedures used to initiate and maintain 'leaf cultures' have been reported earlier (Mehra and Cheema 1980). The cultures were maintained on MS medium containing 2 mg/l 2,4-D at 25 ± 3°C in total darkness since 1979.

Cellus and Cell Suspensions

Semi-organized 'leaf cultures' maintained on MS + 2 mg/l 2,4-D in dark were transferred to MS + 2,4-D (0.2, 0.5 mg/l) media for callus initiation. In the dark, the cell suspensions were initiated by transferring 2 to 3 g (fresh weight) calli to about 40 ml liquid MS medium with 5% sucrose or MS with 0.5 mg/l 2,4-D. In 250 ml conical flasks, the cultures were maintained at 22°C in dark or at 25°C in continuous light on a rotary shaker set at either 50 or 120 rpm. Cell suspensions were subcultured every two to four weeks depending on the growth of the cultures. The callus cultures were maintained on agar-based media and subcultured on respective media every two to four weeks. To study growth and differentiation patterns in continuous light (4000 lux at the culture level) at 25 ± 2°C. Five replicates for each treatment for suspensions and a minimum of 10 replicates for callus cultures were maintained.

Embryo Development and Plant Regeneration

The calli maintained on MS + 2,4-D (0.2 or 0.5 mg/l) were either transferred to the same medium or to a 2,4-D (0.2, 0.5 mg/l) media for callus initiation. Half strength (salts only) MS basal medium with 25% sucrose or MS with 2,4-D (0.4 mg/l) and NAA (0.2 mg/l), the last medium supports not only the induction, growth and differentiation of shoots from various explants and their calli but also induces roots from well-developed shoots three to six weeks after culture on the medium. For plant regeneration, cell suspensions which had undergone three to six passages on MS medium were plated on the above-mentioned media.

Results and Discussion

After an initial hardening procedure modified from Cheema and Sharma (1983), well-developed seedlings and rooted plants were transferred to soil. The cultures consisted of growing seedling/rooted plantlets on (1) half strength (salts only) MS basal medium without sucrose, and (2) sterilized soft coke substrate supplied with half-strength MS without sucrose. Plantlets were kept on these substrates for six to eight weeks. The plantlets with dormant bud-like structure (DBLS) characteristics were removed from agar media or from soft coke substrate and potted in red coarse sand which provided good drainage. Sand cultures were watered regularly on alternate days, to begin with, for a period of two weeks and thereafter daily. Sand cultures were maintained in a growth room (temp. 25°C, 16 h light/8 h dark cycle) for about three months. Plants were having a height of 15-20 cm were transferred to soil in natural outdoor conditions in November, 1986.

Fast growing, friable, yellowish white calli were induced within a period of two weeks from inoculum of 'leaf cultures' on 2,4-D (0.2, 0.5 mg/l) medium. These friable calli were used to induce cell suspensions in the same media and further division of initial cell mass in 7 to 10 days. It was rather difficult to maintain such cultures in good condition due to rapid build-up of anthocyanin pigments and subsequent browning. On continuous growth in light, cells changed from isodiametric form, characteristic of dark grown cells, to elongated form. Consequently, all the experiments for embryogenic cultures were performed with dark-grown cell suspensions.

The reduction in levels of 2,4-D from 0.5 mg/l to 0.2 mg/l in suspensions induced the growth and development of somatic embryos. Embryogenesis was also observed by third subculture, in the cell suspensions which were maintained throughout on MS + 0.2 mg/l 2,4-D. Different stages of embryogenic organizations, ranging from minute to globular to torpedo stage were observed to occur in the same medium. Secondary embryogenesis from the hypocotyl and cotyledon regions often led to the formation of multiple embryo clumps (Fig. 1, 2, 3). Further growth and development into mature somatic embryos required such structures to be plated on agar-based medium. Complete deletion of auxin (2,4-D) from the medium did not sustain further growth and development of embryos. On the contrary, it led to the rooting of same embryos, followed by general senescence of cultures. Transfer of embryogenic cell suspensions to MS medium with 2,4-D, on agar, led to the recallusforming embryos. The transfer of embryogenic mass to a medium containing BAP (0.4 mg/l) + NAA (0.2 mg/l) was essential for the further development of embryogenic suspensions. Typically well-developed normal embryos showed bipolar structure, hypocotyl tapering into a root and two cotyledons at the opposite end (Fig. 4a). A variety of developmental patterns such as precocious germination, arrested shoot development, arrested root development, secondary embryogenesis and good seedling development were observed on this medium (Fig. 4b-c). After six subcultures of cell suspensions which were maintained on MS + 2,4-D containing media, there was a loss of embryogenicity. Such cultures showed a very large number of elongated, highly vacuolated cells with very few starch grains, the presence of which characterized initial phase of cell suspensions.

Contrary to the nature of cell suspensions at this stage, callus cultures that were maintained on agar based MS + 0.5 or 0.2 mg/l, 2,4-D under 24 h light consisted of actively growing, richly cytoplasmic, distinct embryogenic masses. Embryogenic stages ranging from minute to late globular and early torpedo stages with distinct, discretely closed radicular ends were observed. Complete removal of 2,4-D only favoured root growth of embryos followed by senescence. The transfer of these calli after four to five weeks growth on MS with 2,4-D to MS with BAP (0.4 mg/l) and NAA (0.2 mg/l) led to greening and further development of embryos. In different stages of development within a period of fifteen days. By four to six weeks all such cultures showed a few (8-10) well-formed embryos, many (50-60) teratomatic and large numbers...
(hundreds) of globular embryos per culture. Subculture of such embryogenic mass led to three types of development: single well-formed embryos, multiple embryogenic mass by secondary embryogenesis and plant regeneration and rooting (Fig. 6). Contrary to the behaviour of cell suspensions, which lost embryogenic potential after six subcultures, callus tissues kept on agar-based medium with 2,4-D have retained their embryogenic potential for more than a year as tested by frequent transfer to MS medium with BAP and NAA.

Contrary to the behaviour of cell suspensions, which lost embryogenic potential after six subcultures, callus tissues kept on agar-based medium with 2,4-D have retained their embryogenic potential for more than a year as tested by frequent transfer to MS medium with BAP and NAA.

LEAF CULTURES

\[\text{MS} + 2,4-D \]
\[(0.5 \text{ mg/l}) \]
In dark

CALLUS

Agar based cultures

EMBRYOGENIC CALLUS

- MS + 2,4-D (0.5 mg/l)
- in light

- MS + 2,4-D (0.5 mg/l)
- in dark

EMBRYOGENIC SUSPENSION

Liquid cultures

- MS + BAP (0.4 mg/l) + NAA (0.2 mg/l) in light

- MS + 2,4-D (0.2 mg/l) in dark

Protocol 1

Protocol 2

Fig. 6. Summary of the two protocols used for induction of somatic embryogenesis and plant regeneration from tissue and cell suspension cultures of *P. ciliata*.

Figs. 1-5. Somatic embryogenesis and plantlet formation in *P. ciliata*. Fig. 1. Composition of embryogenic cell suspension maintained on MS + 2,4-D (0.2 mg/l). Fig. 2. Different stages of embryo development in cell suspension (X2.25). Fig. 3. Developmental patterns of embryos plated on agar based MS + BAP (0.4 mg/l) + NAA (0.2 mg/l) medium (X5.25). a. Typical well developed embryo. b. Precociously germinating embryo showing secondary embryogenesis from hypocotyl regions. c. Secondary embryogenesis leading to a group of green embryos. Fig. 5. Plantlet raised from a somatic embryo (X0.3).
The two protocols, one utilizing agar based cultures and the other liquid culture for regeneration of plants through somatic embryogenesis, are summarized in Fig. 6. The embryogenic cultures in protocol 1 retain the embryogenic potential over a long period of time as compared to cell suspension. In protocol 2, therefore, high frequency regeneration of plants in agar based cultures, makes the large scale cloning of P. ciliata through somatic embryogenesis a distinct possibility. However, this would require further studies aimed at maintaining sustained embryogenic potential in cell suspensions and control of abnormal developmental patterns in both the protocols.

All the embry-derived plants could be successfully hardened. This was facilitated by the induction of dormant bud-like structures, these hardened plants could be transferred to field soil in natural outdoor conditions. The plantlets showed juvenile leaves (Fig. 5) typical of seedlings derived from sexual progeny. A total of 15 such plantlets were successfully grown in field soil in pots, five of which have grown for more than a year in the field. The performance of these will be compared with plants raised from cuttings.

In most of the plants the basic protocol for obtaining somatic embryos involves the induction of callus growth in an auxin-enriched medium and somatic embryogenesis upon transfer of such calli to a medium free of auxin (Tisserat et al. 1979, Annirato 1983). In some cases, such as the present one, the requirement for somatic embryogenesis is slightly different: it involves initiating and maintaining a morphogenetic system of leaves in dark on an auxin-containing medium, inducing the callus with an auxin (2,4-D), followed by transfer to a medium with a different auxin (NAA) and a cytokinin (BAP). The requirement for such specific conditions like initial dark induction to leaf growth of specific morphogenetic group of cells from different plants and the inhibitory effect of light is known for several species e.g. coffee (Sondahl and Sharp 1977; Mehra & Cheema 1980, 1985) and species of Eugenia (Litz 1984), and sandalwood (LakshmiSita et al. 1980). In recent reviews on tissue cultures of aspens and poplars (Ahuja 1986, 1987) there was no report on somatic embryogenesis in the genus Populus. The present studies show that it is possible to regenerate plants from in vitro established longterm cultures of mature trees on a defined medium by both organogenesis and somatic embryogenesis using appropriate media and sequential treatments with different growth substances. It also demonstrates that embry derived plants could be successfully hardened and transferred to soil and grown in field.

ACKNOWLEDGMENTS

The technical assistance was provided by Mr. D.B. Yadav and Mr. Anoop Sharma.

REFERENCES:

Mehra PN, Cheema GS (1980) Phytomorph.30: 336-343

Mehra PN, Cheema GS (1985) Phytomorph. 35: 151-154

Muroshige T, Skoog F (1962) Physiol.Pl.15: 473-497

Sondhali MR, Sharp WR (1977) Z. Pflanzenphysiol. 87: 395-408
