The screening of Indian flora for serological activity presented here, is by no means exhaustive. Nonetheless it does contribute to extending the scope of lectins in biological research. As the literature on lectin studies is piling up, it is becoming more and more clear that lectins have a good potential for development as important diagnostic reagents. The findings of present study indicate that lectins can contribute usefully to seroanthropology in the following two areas:

(i) Characterisation of human and animal blood.
(ii) Detection of immunological specificities of the red cell membrane of different animal species.

It is abundantly clear from the results of present investigations, as also from the works of some previous authors, that lectins can serve as most useful probes in the identification of the source of blood. Characterisation of human and animal blood can be achieved with a high degree of accuracy, utilising the lectins (phytagglutinins, hemolysins and precipitins) which react in a species specific manner.

The use of lectins for the elucidation of immunogenetic relationship among different animal species has to be understood in the right perspective. It is evident that lectins do not yield any new information on systematics. Our interest in this type of study, however, was to show how close to informational macromolecules some non-informational(episemantic)
molecules can come. It was certainly not the purpose of this study to suggest the possibility of using some episemantic macromolecules for constructing molecular phylogenetic trees. Such molecules are not needed for this purpose, for this can be achieved much more effectively on the basis of comparisons with a phylogenetic tree derived from one or more informational (semantides) macromolecules. The interest in utilizing the red cell membrane specificaties and serum proteins as a measure of genetic distance between species was to establish how much evolutionary information can be obtained from a set of independently variable components of some good episemantic molecules. It is evident that the phylogenetic trees constructed on the basis of similarities and differences in immunogenetic specificities, as revealed by interaction with crude plant extracts, do not show the best fit to morphological systematics. Nevertheless they do indicate a close immunogenetic correspondence between some closely related animal species such as horse and mule, rat and rabbit, sheep and goat, cow and buffalo etc. There is a good reason to believe that the clustering pattern will show considerable improvement, if the lectins with well defined specificities are used instead of crude plant extracts.