LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Details</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Influence of various parameters on abrasive wear performance of composite materials</td>
<td>15</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Chemical Structure of Nylon 6</td>
<td>39</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Chemical Structure of Polypropylene</td>
<td>41</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Chemical structure of Polybutylene terephthalate</td>
<td>43</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Chemical structure of Polycarbonate</td>
<td>45</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Chemical Structure of Polyurethane</td>
<td>47</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Izod impact test specimen</td>
<td>55</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>A schematic of pin-on-disc set up showing the different parts of the sliding wear system</td>
<td>57</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>Principle of generation and detection of AE signals</td>
<td>62</td>
</tr>
<tr>
<td>Figure 3.9</td>
<td>Types of AE Signals (a) AE burst signals and (b) AE continuous signal</td>
<td>63</td>
</tr>
<tr>
<td>Figure 3.10</td>
<td>AE Parameters</td>
<td>68</td>
</tr>
<tr>
<td>Figure 3.11</td>
<td>HDT test Specimen</td>
<td>72</td>
</tr>
<tr>
<td>Figure 3.12</td>
<td>VST test specimen</td>
<td>72</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Stress strain curves for (a) 15, (b) 30, (c) 40 and (d) 50 % short glass fibre nylon 6 composites</td>
<td>80</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Effect of specific tensile strength and specific tensile modulus as a function of SGF content in nylon 6 composites</td>
<td>81</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Effect of load on displacement for 15 % short glass fibre reinforced nylon 6 composites</td>
<td>82</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Effect of load on displacement for 50 % short glass fibre reinforced nylon 6 composites</td>
<td>83</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Effect of load on glass fibre content of nylon 6 composites for different glue thickness</td>
<td>83</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Effect of lap shear strength on glass fibre content of nylon 6 composites for different glue thickness</td>
<td>84</td>
</tr>
</tbody>
</table>
Figure 4.7. Effect of wear rate on load for short glass fibre reinforced nylon 6 composites: (a) 15 (b) 30 (c) 40 and (d) 50 % glass content

Figure 4.8. Effect of wear rate as a function of short glass fibre loading for nylon 6 composites at different disc speeds

Figure 4.9. Transfer layer formed on the counterface during testing at 30 N and 0.4 m/s of (a) glass fibre reinforced (b) unfilled nylon

Figure 4.10 Scanning electron micrograph of the pin surface after testing under 30 N and 0.4 m/s of (a) unfilled (b) glass fibre reinforced nylon 6

Figure 4.11. Fibre breakage during sliding of glass fibre reinforced nylon 6

Figure 4.12. Plot of ring down counts (RDC) verses time of sensor for nylon 6 composites with different short glass fibre contents, (a) 15, (b) 30, (c) 40 and (d) 50 %

Figure 4.13. Effect of total ring down counts (TRDC) on time of sensor for nylon 6 composites with different short glass fibre contents (a) 15, (b) 30, (c) 40 and (d) 50 %

Figure 4.14. Effect of HDT at 1.8 MPa load as a function of SGF content for different nylon 6 composites

Figure 4.15. X-ray profiles of nylon 6 composites with different short glass fibre content; (a) 15, (b) 30, (c) 40 and (d) 50 %

Figure 4.16. Surface SEM photomicrograph of nylon 6 composites with different short glass fibre contents; (a) 15, (b) 30, (c) 40 and (d) 50 %

Figure 4.17. SEM photomicrograph of tensile fractured surface of nylon 6 composites with different short glass fibre contents: (a) 15, (b) 30, (c) 40 and (d) 50 %

Figure 4.18. FEM tensile specimen model for nylon 6 composites with different short glass fibre contents: (a) 15 and (b) 40 %

Figure 4.19. FEM model for nylon 6 composites with different short glass fibre contents: (a) 15, (b) 30, (c) 40 and (d) 50 %

Figure 5.1. Stress strain curves for (a) 10, (b) 20 and (c) 30 % short glass fibre reinforced PP composites

Figure 5.2. Effect of wear volume on abrading distance for (a)22 and (b)32 N
Figure 5.3. Histogram of wear volume and short glass fibre

Figure 5.4. Plot of ring down counts (RDC) verses time of sensor for PP composites with different short glass fibre contents: (a) 10, (b) 20 and (c) 30

Figure 5.5. Variation of TRDC as a function of number of holes for different SGF reinforced PP composites; (a) 10, (b) 20 and (c) 30

Figure 5.6. X-ray profiles of PP composites with different short glass fibre content; (a) 10, (b) 20 and (c) 30

Figure 5.7. Surface SEM photomicrograph of PP composites with different short glass fibre contents; (a) 10, (b) 20 and (c) 30

Figure 5.8. SEM photomicrographs of tensile fractured surface of PP composites with different short glass fibre contents; (a) 10, (b) 20 and (c) 30

Figure 5.9. FEM tensile specimen model for PP composites with different SGF content (a) 10, (b) 20 and (c) 30

Figure 6.1 Stress-strain curves for (a) 10, (b) 20 and (c) 30 \% short glass fibre filled PBT composites

Figure 6.2. Effect of wear volume on abrading distance for (a) 22 N and (b) 32 N

Figure 6.3. Effect of wear rate on abrading distance for (a) 22 N and (b) 32 N

Figure 6.4. Plot of ring down counts (RDC) verses time of sensor for PBT composites with different short glass fibre contents: (a) 10, (b) 20 and (c) 30

Figure 6.5. Variation of TRDC as a function of number of holes for different SGF reinforcement PBT composites (a)10, (b) 20 and (c) 30

Figure 6.6. X-ray profiles of nylon 6 composites with different SGF content; (a) 10, (b) 20 and (c) 30

Figure 6.7. Surface SEM photomicrograph of PBT composites with different short glass fibre contents; (a) 10, (b) 20 and (c) 30

Figure 6.8. SEM microphotograph of tensile fractured surface of PBT composites with different short glass fibre contents; (a) 10, (b) 20 and (c) 30 %

Figure 6.9. FEM tensile specimen model for PBT composites with different short glass fibre content (a) 10, (b) 20 and (c) 30 %

Figure 6.10. FEM model for PBT composites with different SGF contents: (a) 10, (b) 20 and (c) 30 %

Figure 7.1. Stress-strain curves for (a) 10, (b) 20 and (c) 30 % short glass fibre filled PC composites

Figure 7.2. Effect of wear volume on abrading distance for (a) 22 N and (b) 32 N

Figure 7.3. Effect of specific wear volume on abrading distance for (a) 22 N and (b) 32 N

Figure 7.4. Plot of ring down counts (RDC) verses Time of sensor for PC composites with deferent SGF contents; (a) 10 (b) 20 and (c) 30 %

Figure 7.5. Variation of TRDC as a function of number of holes for different SGF reinforced PC composites; (a) 10, (b) 20 and (c) 30 %

Figure 7.6. X-ray profiles of PC composites with different SGF content (a) 10, (b) 20 and (c) 30 %

Figure 7.7. Surface SEM microphotograph of PC composites with different SGF contents; (a) 10, (b) 20 and (c) 30 %

Figure 7.8. SEM microphotograph of tensile fractured surface of PC composites with different SGF contents; (a) 10, (b) 20 and (c) 30 %

Figure 7.9. FEM tensile specimen model for PC composites with different SGF contents; (a) 10, (b) 20 and (c) 30 %

Figure 7.10. FEM model for PC composites with different SGF contents: (a) 10, (b) 20 and (c) 30 %

Figure 8.1. Stress-strain curves for (a) 10, (b) 20, (c) 30 and (d) 40 % short glass fibre filled PU composites
Figure 8.2. Effect of wear volume on abrading distance for (a) 22 N and (b) 32 N.

Figure 8.3. Effect of specific wear volume on abrading distance for (a) 22 N and (b) 32 N.

Figure 8.4. Histogram for specific wear rate on short glass fibre PU composites (a) 22 N (b) 32 N.

Figure 8.5. Histograms showing specific wear rate of short glass fibre content of PU composites at (a) 150 and (b) 600m abrading distance.

Figure 8.6. SEM micrographs of 10% PU composites for 22 N at (a) 150 and (b) 600 m abrading distance.

Figure 8.7. SEM micrographs of 10% PU composites for 32 N at (a) 150 and (b) 600 m abrading distance.

Figure 8.8. SEM micrographs of 40% PU composites for 22 N at (a) 150 and (b) 600 m abrading distance.

Figure 8.9. SEM micrographs of 40% PU composites for 32 N at (a) 150 and (b) 600 m abrading distance.

Figure 8.10. Variation of TRDC as a function of number of holes for different SGF reinforced PU composites; (a) 10, (b) 20, (c) 30 and (d) 40%.

Figure 8.11. X-ray profiles of PU composites with different SGF contents; (a) 10, (b) 20, (c) 30 and (d) 40%.

Figure 8.12. FEM tensile specimen model for PU composites with different SGF contents; (a) 10, (b) 20, (c) 30 and (d) 40%.