<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Hard turning on a Hardinge Quest lathe (http://www.hardinge.com)</td>
<td>3</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Microstructure of the AISI 4340 steel (a) before and (b) after heat treatment (as-quenched martensite structure at 850°C: 30 min) (Woei and Tzay, 1999)</td>
<td>5</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>Successful hardened steel machined parts: (a) drive shafts and gears (b) bearings (c) punches/dies (http://www.hardinge.com)</td>
<td>7</td>
</tr>
<tr>
<td>Figure 1.4</td>
<td>(a) Heavy duty linear guide ways for lathe (b) Rigid work holding devices and (c) Rigid tool locations (http://www.hardinge.com)</td>
<td>8</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Four stages of chip formation in machining of hardened steel (Poulachon and Moisan, 2000)</td>
<td>26</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>SEM view of material side flow (Kishawy and Elbestawi, 1999)</td>
<td>30</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>SEM view of the machined subsurface structure of D2 tool steel (Kishawy and Elbestawi, 2001)</td>
<td>33</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>SEM view of work piece plastic flow (Thiele and Melkote, 2000).</td>
<td>33</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>SEM view of machined surface (a) single pass and (b) multiple pass with worn tool on D2 tool steel (Kamely et al., 2007)</td>
<td>34</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Influence of different parameters on machining of hardened steel</td>
<td>39</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Influence of tempering temperature on the microstructure of AISI4340 Steel (a) before heat treatment and (b) after quenching, tempered at 430°C for 2hrs.</td>
<td>46</td>
</tr>
</tbody>
</table>
Figure 3.2 Influence of tempering temperature on the microstructure of AISI H13 Steel (a) before heat treatment and (b) after quenching, tempered at 395°C for 2 hrs.

Figure 3.3 Tool holder with insert (b) cutting inserts (0.8mm nose radius)

Figure 3.4 (a) Insert with tool geometry (b) order of CVD multilayer coating on coated carbide tool.

Figure 3.5 Experimental setup (MAZAK CNC lathe)

Figure 3.6 Optical images of broken coated carbide tool (KCP05) at different conditions (a) Vc= 320 m/min, f=0.32mm/rev and d=1.5mm, (b) Vc= 350 m/min, f=0.32mm/rev and d=1.5mm.

Figure 3.7 Optical images of broken coated ceramic tool (KY4400) at Vc= 260m/min, f=0.26mm/rev and d=1.3 mm.

Figure 3.8 Schematic representation of force measurement during machining

Figure 3.9 Experimental setup with Kistler type 9129AA three force component piezo-electric dynamometer

Figure 3.10 Charge amplifiers and PC based data acquisition system.

Figure 3.11 Example of cutting forces for hardened AISI4340 steel with coated carbide tool at Vc= 200 m/min, f = 0.18 mm/rev and d=1.0 mm.

Figure 3.12 Optical measuring microscope with data processing 500x magnifications

Figure 3.13 Surface Roughness Testers

Figure 3.14 Mounted machined surface specimens encapsulated in an epoxy resin

Figure 3.15 Scanning Electron Microscope

Figure 3.15 Residual stresses were measured by using (a) X-ray residual stress analyzer and (b) X-ray setup with alignment jig.

Figure 3.16 Plot showing (a) Intensity v/s 2θ (b) 2θ v/s sin2ψ
Figure 4.1
(a) Variation of cutting forces with cutting speed for the turning of hardened AISI 4340 and H13 steels with multilayer coated carbide tool at constant cutting time of 4 min.
(b) Variation of cutting forces with cutting speed for the turning of hardened AISI 4340 and AISI H13 steels with mixed ceramic tool and (c) coated ceramic tool

Figure 4.2
(a) Variation of cutting forces with feed rate for the turning of hardened AISI 4340 and H13 steel with multilayer coated carbide at constant cutting time of 4 min.
(b) Variation of cutting forces with feed rate for the turning of hardened AISI 4340 and AISI H13 steel with mixed ceramic and (c) coated ceramic tool at cutting time of 4 min.

Figure 4.3
(a) Variation of cutting forces with depth of cut for the turning of AISI 4340 and AISI H13 steel with multilayer coated carbide at constant cutting time of 4 min.
(b) Variation of cutting forces with depth of cut for the turning of hardened AISI 4340 and AISI H13 steel with mixed ceramic tool and (c) coated ceramic tool at constant cutting time of 4 min.

Figure 4.4
(a) Effect of cutting time on cutting forces in turning of AISI 4340 and AISI H13 steel with multilayer coated carbide at constant cutting at $V_c = 140$ m/min, $f = 0.14$ mm/rev and $d = 0.6$ mm
(b) Effect of cutting time on cutting forces in turning of AISI 4340 and AISI H13 steel with mixed ceramic and (c) coated ceramic tool at constant cutting at $V_c = 140$ m/min, $f = 0.14$ mm/rev and $d = 0.6$ mm

Figure 4.5
(a) Effect of cutting speed and (b) Effect of feed rate on machining power in turning of hardened AISI 4340 and AISI H13 steel at constant cutting time of 4 min.
(c) Effect of depth of cut on machining power in turning of AISI 4340 and AISI H13 steel at cutting time of 4 min.
Figure 4.6 Effect of cutting time on machining power in turning of AISI 4340 and AISI H13 steel at constant $V_c = 140\text{m/min}$, $f = 0.14\text{mm/rev}$ and $d = 0.6\text{mm}$

Figure 4.7 (a) Variation of tool wear with cutting speed for AISI 4340 steel and H13 steel at a constant feed rate of 0.14 mm/rev, depth of cut of 0.6 mm and cutting time of 4 min with multilayer coated carbide

Figure 4.7 (b) Variation of tool wear with cutting speed for AISI 4340 steel and H13 steel at a constant feed rate of 0.14 mm/rev, depth of cut of 0.6 mm and cutting time of 4 min with mixed ceramic tool and (c) coated ceramic tool.

Figure 4.8 SEM Image showing the tool fracture on multilayer carbide tool while cutting AISI H13 steel at a cutting speed of 260 m/min, feed rate of 0.14 mm/rev, depth of cut of 0.6 mm.

Figure 4.9 (a) Variation of tool wear with feed rate for AISI 4340 steel and H13 steel at a constant cutting time of 4 min, cutting speed of 140 m/min and depth of cut of 0.6 mm with multilayer coated carbide tool

Figure 4.9 (b) Variation of tool wear with feed rate for AISI 4340 and H13 steels at cutting speed of 140 m/min and depth of cut of 0.6 mm with ceramic and (c) coated ceramic tools.

Figure 4.10 SEM Image showing the tool wear pattern on multilayer carbide tool while cutting AISI 4340 steel at feed rate of 0.26 mm/rev

Figure 4.11 (a) Variation of tool wear with depth of cut for AISI 4340 steel and H13 steel at a constant cutting time of 4 min cutting speed of 140 m/min and feed rate of 0.14 mm/rev with multilayer coated carbide tool

Figure 4.11 (b) Variation of tool wear with depth of cut for AISI 4340 steel and H13 steel at a constant cutting time of 4 min cutting speed of 140 m/min and feed rate of 0.14 mm/rev with mixed ceramic and (c) coated ceramic tools.
Figure 4.12 (a) Variation of tool wear with cutting time at constant cutting speed of 140 m/min, feed rate of 0.14 mm/rev and depth of cut of 0.6 mm with multilayer coated carbide and (b) mixed Ceramic tool

Figure 4.12 (c) Variation of tool wear with cutting time for various cutting tools and materials for a constant cutting speed of 140 m/min, feed rate of 0.14 mm/rev and depth of cut of 0.6 mm with coated ceramic tool

Figure 4.13 Micrographic images of worn cutting edges of coated carbide tool during turning of H13 steel at \(V_c = 140 \text{ m/min}, f = 0.14 \text{ mm/rev}, d = 0.6 \text{ mm} \) and cutting time of (a) \(t = 2 \text{ min} \) and (b) \(t = 8 \text{ min} \).

Figure 4.14 SEM views of wear effect observed on multilayer coated carbide tool at (a) \(V_c = 140 \text{ m/min}, f = 0.14 \text{ mm/rev}, d = 0.6 \text{ mm} \) and \(t = 8 \text{ min} \). (b) \(V_c = 260 \text{ m/min}, f = 0.1 \text{ mm/rev}, d = 0.6 \text{ mm} \) and \(t = 8 \text{ min} \).

Figure 4.15 EDAX pattern of the worn-out coated carbide tool (magnification 500x and 20.0 kV) at \(V_c = 260 \text{ m/min}, f = 0.10 \text{ mm/rev and } d = 0.6 \text{ mm} \)

Figure 4.16 Examples of tool worn appearance on the multilayer coated carbides during (a) turning of H13 steel at \(V_c = 260 \text{ m/min}, f = 0.1 \text{ mm/rev}, d = 0.6 \text{ mm} \) and \(t = 4 \text{ min} \), (b) magnification of site A in (a), (c) turning of AISI 4340 steel at \(V_c = 260 \text{ m/min}, f = 0.26 \text{ mm/rev}, d = 0.6 \text{ mm} \) and \(t = 8 \text{ min} \), (d) magnification of site A in (c).

Figure 4.17 Micrographic images of worn cutting edges of mixed ceramic tool during turning of hardened AISI H13 steel at different cutting conditions.

Figure 4.18 EDAX pattern of the worn-out tool (magnification 500x and 20.0 kV) at \(V_c = 140 \text{ m/min}, f = 0.14 \text{ mm/rev and } d = 0.6 \text{ mm} \)
Figure 4.19 Micrographic images of worn cutting edges of mixed ceramic tool during turning of hardened AISI4340 steels at $V_c=260$ m/min, $f=0.26$ mm/rev, $d=0.6$ mm and $t=8$ min.

Figure 4.20 Micrographic images of worn cutting edges of coated ceramic tool during turning of AISI 4340 steel and H13 steel at different cutting conditions.

Figure 4.21 Chip formation during hard turning of AISI 4340 steel at different cutting conditions.

Figure 4.22 Chip formation during hard turning of AISI H13 steel at different cutting conditions.

Figure 4.23 Photomicrographs showing chip formation and deformation zone depending on the conditions for hardened steels (30x).

Figure 4.24 (a) Effect of cutting speed on chip thickness variations produced during turning of hardened AISI 4340 and H13 steels.

Figure 4.24 (b) Effect of feed rate and (c) depth of cut on chip thickness variations produced during turning of hardened AISI 4340 and H13 steels.

Figure 5.1 (a) Variation of surface roughness with cutting speed for the turning of hardened AISI 4340 steel and H13 steel at a constant cutting time of 4 min, feed rate of 0.14 mm/rev and depth of cut of 0.6 mm with multilayer coated carbide tool and (b) mixed ceramic tool.

Figure 5.1 (c) Variation of surface roughness with cutting speed for the turning of hardened AISI 4340 steel and H13 steel at a constant cutting time of 4 min, feed rate of 0.14 mm/rev and depth of cut of 0.6 mm with coated ceramic tool.

Figure 5.2 (a) Variation of surface roughness with feed rate for the turning of hardened AISI 4340 steel and H13 steel at a constant cutting time of 4 min, cutting speed of 140 m/min and depth of cut of 0.6 mm with multilayer coated carbide tool.
(b) Variation of surface roughness with feed rate for the turning of AISI 4340 steel and H13 steel at a constant cutting time of 4 min, cutting speed of 140m/min and depth of cut of 0.6mm with mixed ceramic and (c) coated ceramic tools.

(a) Variation of surface roughness with depth of cut for the turning of AISI 4340 steel and H13 steel at a constant \(t = 4 \) min, \(V_c = 140 \) m/min and \(f = 0.14 \) mm/rev with coated carbide and (b) mixed ceramic tool.

(c) Variation of surface roughness with depth of cut for the turning of AISI 4340 steel and H13 steel at a constant cutting time of 4 min, cutting speed of 140m/min and feed rate of 0.14mm/rev with coated ceramic tool.

Variation of surface roughness with cutting time for the turning of AISI 4340 steel and H13 steel at a constant cutting time of 4 min cutting speed of 140m/min and feed rate of 0.14mm/rev with multilayer coated carbide, ceramic and coated ceramic tools.

SEM images showing the material side flow on the machined surface during turning of AISI 4340 steel with coated carbide tool at \(V_c = 200 \) m/min, \(f = 0.10 \) mm/rev, \(d = 0.8 \) mm and \(t = 2 \) min and 8min.

Effect of tool wear on material side flow on the machined surface during turning of AISI H13 steel with mixed ceramic tool at constant \(V_c = 200 \) m/min, \(f = 0.1 \) mm/rev, \(d = 0.6 \) mm and \(t = 2 \) min and 8min.

SEM images of surfaces produced during turning of hardened AISI 4340 steel with coated carbide tool at \(V_c = 260 \) m/min, \(f = 0.1 \) mm, \(d = 1.0 \) mm and \(t = 4 \) min and 8min.

SEM images showing cavities in the machined surface during turning of hardened AISI 4340 steel with coated carbide tool at (a) \(V_c = 200 \) m/min, \(f = 0.26 \) mm/rev, \(d = 0.8 \) mm and \(t = 4 \) min, (b) \(V_c = 140 \) m/min, \(f = 0.18 \) mm/rev, \(d = 0.6 \) mm and \(t = 6 \) min.
Figure 5.9 SEM images show the microcracks in the machined surface during turning of hardened AISI 4340 steel with coated carbide tool at (a) lower magnification and (b) higher magnification.

Figure 5.10 SEM image of material side flow exist on the machined surface during turning of hardened AISI 4340 steel with ceramic tool at \(V_c=260\text{m/min}, f=0.1\text{mm/rev}, d=0.8\text{mm} \) and \(t=4\text{min} \).

Figure 5.11 Effect of tool wear on material side flow during turning of hardened AISI H13 steel with ceramic tool at \(V_c=260\text{m/min}, f=0.1\text{mm/rev}, d=0.3\text{mm} \) and \(t=6\text{min} \), (a) lower magnification (b) higher magnification.

Figure 5.12 Effect of tool wear on material side flow during turning of hardened AISI H13 steel with coated ceramic tool at \(V_c=260\text{m/min}, f=0.06\text{mm/rev} \) and \(d=0.3\text{mm} \) and \(t=8\text{min} \), (a) lower magnification (b) higher magnification.

Figure 5.13 Digital camera and SEM images of machined surface of hardened AISI 4340 steel using multilayer coated carbide tool at cutting conditions of cutting speed of 260m/min feed rate of 0.18 mm/rev, \(d=0.3\text{mm} \) and cutting time of 6min., (a) lower magnification (b) higher magnification.

Figure 5.14 Micrographic views of microstructural changes at a hard turned surface of AISI H13 steel using coated carbide tool at (a) \(V_c=140\text{m/min}, f=0.14\text{mm/rev} \) and \(d=0.6\text{mm} \) and (b) \(V_c=260\text{m/min}, f=0.1\text{mm/rev} \) and \(d=0.3\text{mm} \) and \(t=8\text{min} \).

Figure 5.15 Micrographic views of microstructural changes at a hard turned surface of AISI H13 steel using mixed ceramic tool at (a) \(V_c=200\text{m/min}, f=0.14\text{mm/rev} \) and \(d=0.6\text{mm} \) and \(t=4\text{min} \), (b) \(V_c=260\text{m/min}, f=0.14\text{mm/rev} \) and \(d=0.3\text{mm} \) and \(t=8\text{min} \).

Figure 5.16 Schematic illustration of the residual stresses levels (penetration depth (a), beneficial depth (b) and maximum compressive residual stress (c)) (Hua et al., 2006).
Figure 5.17 Effect of cutting speed on residual stresses distribution during turning of hardened AISI 4340 and H13 steels at constant feed rate of 0.14mm/rev, depth of cut of 0.6 mm and cutting time of 4min.

Figure 5.18 Effect of feed rate on residual stresses distribution during turning of hardened AISI 4340 and H13 steels at constant cutting speed of 140 m/min, depth of cut of 0.6 mm and cutting time of 4min.

Figure 5.19 Effect of depth of cut on residual stresses distribution during turning of AISI 4340 and H13 steels at constant \(V_c = 140 \) m/min, \(f = 0.14 \) mm/rev and \(t = 4 \) min.

Figure 5.20 Effect of cutting time on surface residual stresses during turning of AISI 4340 steel and H13 steel with different cutting tools at constant \(V_c = 140 \) m/min, \(f = 0.14 \) mm/rev and \(d = 0.6 \) mm.

Figure 6.1 Graphs of the main cutting variables effects of on machining force during machining of AISI 4340 steel.

Figure 6.2 Graphs of the interaction effects of cutting variables on machining force during machining of AISI 4340 steel.

Figure 6.3 Graphs of the main cutting variables effects on machining power during machining of AISI 4340 steel.

Figure 6.4 Graphs of the interaction effects of cutting variables on machining power during machining of AISI 4340 steel.

Figure 6.5 Graphs of the main cutting variables effects on tool wear during machining of AISI 4340 steel.

Figure 6.6 Graphs of the interaction effects of cutting variables on tool wear during machining of AISI 4340 steel.

Figure 6.7 Graphs of the main cutting variables effects on surface roughness during machining of AISI 4340 steel.

Figure 6.8 Graphs of the interaction effects of cutting variables on surface roughness during machining of AISI 4340 steel.
Figure 6.9 Graphs of the main cutting variables effects of on machining force during machining of AISI H13 steel 162
Figure 6.10 Graphs of the interaction effects of cutting variables on machining force during machining of AISI H13 steel 162
Figure 6.11 Graphs of the main cutting variables effects of on machining power during machining of AISI H13 steel 164
Figure 6.12 Graphs of the interaction effects of cutting variables on machining power during machining of AISI H13 steel 164
Figure 6.13 Graphs of the main cutting variables effects of on tool wear during machining of AISI H13 steel 166
Figure 6.14 Graphs of the interaction effects of cutting variables on tool wear during machining of AISI H13 steel 166
Figure 6.15 Graphs of the main cutting variables effects of on surface roughness during machining of AISI H13 steel 168
Figure 6.16 Graphs of the interaction effects of cutting variables on surface roughness during machining of AISI H13 steel 168