Contents

Chapter 1: Introduction. 1-89

1.1 Thinfilms
 1.1.1. Applications of the thin films in different fields
 1.1.2. Preparation technology

1.2. Thin films by Electroless plating 16
 1.2.1. Typical bath constituents and their effect
 1.2.2. Types of electroless plating bath
 1.2.3. Effect of P content
 1.2.4. Corrosion resistance of Ni-P deposit
 1.2.5. Composite coating

1.3. Thin films by electrodeposition 38
 1.3.1. Electrodeposition bath constituents and parameters
 1.3.2. The choice of Zinc coating
 1.3.2.1. Importance of zinc electrodeposition on steel
 1.3.2.2. Requirement for zinc coating
 1.3.2.3. Mechanism of Zinc electrodeposition
 1.3.3. Electrodeposition of zinc alloys
 1.3.4. Superiority of Zn-Ni alloy deposits
 1.3.4.1. Mechanism of Zn-Ni electrodeposition
 1.3.5. Thin film analysis

1.4. Steel: Importance, behavior and corrosion 62
 1.4.1. Importance of steel as engineering material
 1.4.2. Chemical behavior of steel
 1.4.3. Consequences of corrosion and need of its study
 1.4.4. Fundamentals of Corrosion
 1.4.4.1. Definition
 1.4.4.2. The electrochemical theory
 1.4.5. Preparation of thin films on steel for corrosion protection

1.5. Corrosion rate measurement and techniques 77

References

Chapter 2: Aim and Scope. 90-94

Chapter 3: Methods and Materials. 95-116

3.1. Preparation of electrode surface 95
3.2. Preparation of bath solution 96
3.3. Process of deposition
3.3.1. Electroless deposition
3.3.2. Electrodeposition

3.4. Characterization of the deposits
3.4.1. Powder X-ray diffraction studies
3.4.2. SEM and EDX analysis
3.4.3. Surface roughness
3.4.4. Coating thickness measurement
3.4.5. UV-Vis spectroscopy
3.4.6. FTIR spectroscopy
3.4.7. Particle size analyzer and zeta potential measurement
3.4.8. XRD analysis

3.5. Evaluation of performance of the deposits
3.5.1. Corrosion rate measurements-Electrochemical Methods
 3.5.1.1. Open circuit potential
 3.5.1.2. Polarization
 3.5.1.3. Tafel’s extrapolation
 3.5.1.4. Impedance method
3.5.2. Microhardness studies
3.5.3. Friction

References

Chapter 4: Electroless nickel films

Chapter 4.1: Development of high performance electroless Ni-P-Halloysite nanotubes composite coatings

4.1.1. Introduction
4.1.2. Experimental
4.1.3. Results and discussion
 4.1.3.1. Characterization of HNTs-FTIR, SEM & TEM
 4.1.3.2. Characterization of deposits-SEM, EDX & XRD
 4.1.3.3. Corrosion
 4.1.3.4. Microhardness
 4.1.3.5. Friction
4.1.4. Conclusion

References
Chapter 4.2: Development of electroless Ni-Zn-P/nano TiO\(_2\) composite coatings

139-153

4.2.1. Introduction

4.2.2. Experimental

4.2.3. Results and discussion

 4.2.3.1. SEM and EDX analysis
 4.2.3.2. XRD studies
 4.2.3.3. Microhardness studies
 4.2.3.4. Anodic polarization
 4.2.3.5. Tafel studies
 4.2.3.6. Electrochemical impedance spectroscopy studies

4.2.4. Conclusion

150

References

Chapter 4.3: Process and properties of electroless Ni-Cu-P-ZrO\(_2\) nanocomposite coatings

154-178

4.3.1. Introduction

4.3.1.1. Deposition of Zn and Zn-TiO\(_2\) coatings

4.3.1.2. Corrosion measurements

4.3.1.3. Surface characterization

4.3.2. Experimental

4.3.3. Results and discussion

 4.3.3.1. Characterization of ZrO\(_2\) particles
 4.3.3.2. Surface morphology
 4.3.3.3. Effect of Cu on deposit composition
 4.3.3.4. Crystal structure
 4.3.3.5. Electrochemical studies
 4.3.3.6. Microhardness

4.4.6. Conclusions

175

References

Chapter 4.4: Electroless Ni-W-P films

179-180

Chapter 4.4.1: Electroless Ni-W-P coatings and its nano-WS\(_2\) composite: preparation and properties

181-198

4.4.1. Introduction

4.4.1.2. Experimental

4.4.1.3. Results and Discussion

 4.4.1.3.1. Characterization of WS\(_2\) nanoparticles
 4.4.1.3.2. Surface morphology and composition
 4.4.1.3.3. Surface structure
Chapter 4.4.2: Studies on preparation and properties of electroless Ni-W-P alloy Coatings and its nano-MoS₂ composite

4.4.2.1. Introduction 199
4.4.2.2. Experimental 200
4.4.2.3. Results and discussion 201
 4.4.2.3.1. Characterization of MoS₂ nanoparticles
 4.4.2.3.2. Particle distribution
 4.4.2.3.3. Morphology and composition – SEM & EDX
 4.4.2.3.4. Structure – XRD
 4.4.2.3.5. Electrochemical studies – Tafel & EIS
 4.4.2.3.6. Microhardness
 4.4.2.3.7. Friction
4.4.2.4. Conclusion 216
References

Chapter 5: Electrodeposition of Zinc films

Chapter 5.1. Electrochemical studies on Zn/nano CeO₂ electrodeposited composite coatings

5.1.1. Introduction 221
5.1.2. Experimental 222
5.1.3. Results and discussion 223
 5.1.3.1. Particle size distribution and zeta potential
 5.1.3.2. SEM
 5.1.3.3. Surface roughness
 5.1.3.4. XRD – Texture
 5.1.3.5. Cathodic polarization
 5.1.3.6. Electrochemical studies
5.1.4. Conclusions 239
References