LIST OF SCHEMES

INTRODUCTION

0.1. Addition of bromine to an alkene ............................................................ 2
0.2. Methodology for the preparation of bicyclo-[4.4.4]-1-tetradecene (26) ........................................................... 18
0.3. Two pathways for the formation of [4.4.0]-bicyclic product ............................................ 20
0.4. The transannular carbon-carbon bond formation in the presence of an organometallic reagent ............................................................ 21
0.5. Plausible pathway for the formation of unwanted aldol cyclized product during functional group interconversion in triketone 35 ...................................................................... 22
0.6. Base promoted rearrangement of the diketone 38 ........................................... 23
0.7. Stereo-selective synthesis of new asymmetric centers by exploitation of the conformational bias in these carbocycles ........................................... 26

CHAPTER 1

1.1. Synthesis of trans-9-decahydrihydroperoxide (1) from the mixture of cis- and trans-decalin ............................................................ 36
1.2. Plausible reaction intermediates for the Criegee rearrangement ........................................ 42

CHAPTER 2

2.1. Synthesis of 2,5,7,10-octadeuterated-6-hydroxycyclodecanone (2) under acidic and basic conditions ............................................................ 77
2.2. Base and acid catalyzed reaction of 6-hydroxycyclodecanone (1) in D₂O ............................................................ 79
2.3. Synthesis of 2,2,10,10-d₄-6-methyl-6-hydroxycyclodecanone (5) and 2,2,10,10-d₄-6-(1,1,1-triphenylmethoxy)cyclodecanone (6) under basic conditions ................................................................. 81

CHAPTER 3

3.1. Mass spectral fragmentation of 6-(1,1,1-triphenylmethoxy) cyclodecanone (2a) ................................................................................................. 93

3.2. Mass fragmentation of 6-[(tert-butyldimethylsilyl)oxy]cyclodecanone (2b) ........................................................................................................ 97

3.3. Reaction pathway for formation of 6-ketoethers (2a and 2b) in non-polar solvent ......................................................................................... 99

3.4. Reaction pathway for the formation of 6-(ortho-bromobenzyloxy)-1,6-epoxydecalin (4g) in acetonitrile ................................................................. 102

3.5. Attempted preparation of methoxycyclodecane ................................................................................................................................. 109

3.6. Reaction pathway for the formation of 6-ketoethers (2c-2g) from 6-hydroxycyclodecanone (1) in the polar solvents ........................................ 109

3.7. Attempted preparation of dicyclodecyl ether ................................................................................................................................. 114

3.8. Attempted preparation of 6-(6-oxocyclodecanyloxy) cyclodecanone (5) under thermal heating ................................................................. 114

3.9. Reaction pathway for the formation of 6-(6'-oxocyclodecanyloxy)cyclodecanone (5) in water ....................................................... 115

CHAPTER 4

4.1. Solution state photolysis of cyclodecanone ................................................................................................................................. 140

4.2. Solid-state reaction pathways for photoreaction of 6-hydroxycyclodecanone (8) ....................................................................................... 147

4.3. Mechanism of product formation in the photoreaction of cyclodecanone ................................................................................................. 149

XIII
4.4. Photolysis of 6-hydroxycyclodecanone (8) in the solution state

4.5. Plausible reaction pathways for the formation of trans-decalin-9,10-diol (9) and of cis-decalin-9,10-diol (10) in solution

CHAPTER 5

5.1. Various 6-alkoxycyclodecenes to probe the stereo- and regio-chemical outcome of the bromination reaction

5.2. Proposed synthesis of trans-1,2-dibromocyclodecane from cyclodecenes

5.3. Bromination of (Z)- and (E)-cyclodecene to provide transannular cis- and trans-1,6-dibromocyclodecanes

5.4. Bromination of (Z)-cyclodecene to provide trans-1,2-dibromocyclodecanes (7) and cis-1,6-dibromocyclodecane (8)

5.5. Isolation of trans-1,2-dibromocyclodecane (7), cis-1,6-dibromocyclodecane (8) and 1,2,6c-tribromocyclodecane (10) by addition of bromine to (Z)-cyclodecene

5.6. Plausible pathways leading to formation of normal as well as transannular products by bromination of (Z)-cyclodecene

5.7. Plausible routes for the synthesis of (Z)- and (E)-6-alkoxycyclodecenes


5.9. Mass spectral fragmentations of (Z)-5-cyclodecenol (36)

5.10. Mass spectral fragmentations of 6-ortho-bromobenzyloxy-(Z)-cyclodecenc (40)

5.11. Bromination of (Z)-5-cyclodecenols to form 1,2- and 1,6-dibromocyclodecanols