INTRODUCTION

0.1. Addition of bromine to (Z)- and (E)-cyclodecene ..2
0.2. General Reaction: Addition of hydrogen cyanide to carbonyl compounds ...3
0.3. Addition of alcohols to carbonyl compound ..3
0.4. Plausible pathways for Norrish type II reaction ...5
0.5. Variation of ring strain as a function of ring size6
0.6. Conformations of cyclodecane with calculated strain energies given in parenthesis ..7
0.7. (a) Cyclodecane skeleton with 2/m symmetry showing the presence of only three non-equivalent carbon atoms (labeled as I, II and III). (b) CCC angles (in degrees; inside the ring) torsional angles (outside the ring) in cyclodecane ..9
0.8. Observed position of substituents in cyclodecane-1,6-trans-diamine dihydrochloride (a) Triclinic form (b) Monoclinic form ..10
0.9. Molecular conformations of carbonyl derivatives of cyclodecane (a) Cyclodecanone (b) 1,6-cyclodecanedione ...11
0.10. Molecular conformations of (a) (E)-Cyclodecene (b) (Z)-Cyclodecene ...12
0.11. Proposed conformation of cyclodecane-1,6-dione in the solution ...12
0.12. Ten membered carbocycles studied by NMR spectroscopy13
0.13. Interconversion of equatorial and axial fluorine positions in the conformation BCB of 1,1-difluorocyclodecane (11)14
0.14. Formolysis of (Z)-cyclodecene affords cis–1,6-cyclodecanediol instead of trans-1,2-cyclodecanediol ..15
0.15. Bromination of (E)-cyclodecene (2) leading to formation of trans-1,6-dibromocyclocdecane (4) ... 16
0.16. Keto-alcohol isomerism under basic conditions via 1,5-hydride shift ... 16
0.17. Formation of ketone from diol via 1,6-hydride shift 17
0.18. Formation of keto-ether from keto-alcohol via 1,6-hydride shift ... 17
0.19. Generation of 1,6-dimethyl-1-cyclodecy1 cation under strong acidic conditions ... 18
0.20. Insertion of eleven deuterium atoms in bicyclic alkene under acidic conditions indicating three centre C-H-C bonding of the cation formed ... 19
0.21. Transannular carbon-carbon bond formation in cyclodecane derivatives under basic conditions 19
0.22. Transannular carbon-carbon bond formation in the excited state .. 21
0.23. Intramolecular oxidation and reduction leading to isomerization of 42 ... 23
0.24. Formation of unexpected transannular bicyclic product 45 24
0.25. Formation of bicyclic products 48 and 49 owing to proximity of carbons on the opposite sides of the ring .. 24
0.26. Bromination of 5,5,8,8-tetramethyl-(Z)-cyclodecene (50) yields normal addition product, i.e. trans-1,2-dibromo-cyclocdecane (51) .. 25

CHAPTER 1

1.1. Some sesquiterpenes consisting of ten membered carbocycles ... 34
1.2. ORTEP diagram of trans-9-decahydroyperoxide benzoate (2) ... 37
1.3. ORTEP diagram of 6-benzoyloxy-1,6-epoxydecalin (3) 40
1.4. Perspective views of 6-hydroxycyclodecanone (4), displaying Boat-Chair-Boat (BCB) conformation of the carbocyclic framework ... 44
1.5. Packing diagram of 6-hydroxycyclodecanone (4) 47
1.6. Influence of temperature on the hydroxyketone-hemiacetal equilibrium in 6-hydroxycyclodecanone ... 53

CHAPTER 2

2.1. Hydroxy-ketones studied for the intramolecular hydride transfer leading to interchangeability of hydroxyl and carbonyl moiety .. 73
2.2. Dissolution of 6-hydroxycyclodecanone (1) in water 75

CHAPTER 3

3.1. The ambient reactivity of 6-hydroxycyclodecanone as a function of polarity of the solvent: Interaction of >C=O with hydroxyl is favorable in the non-polar solvents while hydride interacts with >C=O in the polar solvents .. 90
3.2. ORTEP diagram of 6-(1,1,1-triphenylmethoxy)cyclodecanone (2a) ... 94
3.3. ORTEP diagram of 6-(ortho-bromobenzyloxy)cyclodecanone (2g) ... 103
3.4. ORTEP diagram of 6-(ortho-bromobenzyloxy)-1,6-epoxydecalin (4g) ... 105
3.5. ORTEP diagram of 6-(6'-oxocyclodecanyloxy)cyclodecanone (5) ... 111
CHAPTER 4

4.1. Electronic configuration of the ground and excited states of carbonyl functionality ... 132
4.2. Plausible pathways for Norrish type II reaction 133
4.3. Geometric parameters (d, θ, Δ and ω) for intra-molecular hydrogen abstraction ... 136
4.4. Solid-state conformations of (a) 1,10-cyclooctadecanone (1) (b) 1,6-cyclooctadecanone (2) .. 138
4.5. UV absorption spectrum of cycloheptanone and 6-HK (8) in various solvents ... 141
4.6. ORTEP diagram of trans-decalin-9,10-diol (2) 144
4.7. Solid-state conformation of 6-hydroxycyclodecanone (8) 146
4.8. A perspective view of cis-decalin-9,10-diol (10) with atom numbering scheme .. 151
4.9. A perspective view of trans-1,6-cyclooctadecanediol (12) with atom numbering scheme (thermal ellipsoids are at 50% probability level) .. 154
4.10. Probable reaction pathway involving triplet state leading to formation of trans-decalin-9,10-diol (9) and of cis-decalin-9,10-diol (10) in solution ... 157
4.11. Possible pathway for the formation of photoreduction products cis- and trans-1,6-cyclooctadecadiens (12 and 13) in water 158

CHAPTER 5

5.1. Formation of transannular cis-1,6-dibromocycloctadecane via 1,5-hydride shift during bromination reaction on (Z)-cyclooctadecene .. 171
5.2. A perspective view of cis-1,6-dibromocyclodecane (8) with atom numbering scheme (thermal ellipsoids are at 50% probability level)..174

5.3. A perspective view of 1,2t,6c-tribromocyclodecane (10) with atom numbering scheme (thermal ellipsoids are at 50% probability level)..176

5.4 (a) Comparison of torsional angles (degrees) in unsubstituted cyclodecane bold), 8 (italics) and 10 (inside the ring); (b) LC representation of cyclodecane skeleton with 2/m symmetry showing the presence of only three non-equivalent carbon atoms (labeled as 1, 2 and 3)..181

5.5. Packing of Chlorine, Bromine and Iodine in the crystalline state..183

5.6. Packing of 1,4-dichlorobenzene in the crystalline state.....................184

5.7. Packing of trans-1,6-dibromocyclodecane in the crystalline state..185

5.8. Packing of cis-1,6-dibromocyclodecane (8) showing the formation of wedge shaped rectangles due to bifurcated Br..Br interactions..186

5.9. Packing of 1,2t,6c-tribromocyclodecane (10) showing its similarity with cis-1,6-dibromocyclodecane (8)..187

5.10. Conformations of (a) (E)-5-cyclodecenone (13) and (b) (Z)-5-cyclodecenone (18)...190

5.11. Conformations of (a) 6-methoxy-(E)-cyclodecenone (22) and (b) 6-methoxy-(Z)-cyclodecenone (23)...194