List of Figures

2.1 Decay of TSAC function $S(t)$ w.r.t. time t. 36

3.1 Variation of $S_2(m_1, m_2)$ with mass ratio at different concentrations of the lighter particle of a two component isotopic fluid. 44

3.2 Variation of $S_2(m_1, m_2)$ with concentration of the lighter particle of a two component isotopic fluid for different mass ratios. 44

3.3 Variation of fourth sum rule with mass ratio at different concentrations of the lighter particle of a two component isotopic fluid. 45

3.4 Variation of fourth sum rule with concentration of the lighter particle of a two component isotopic fluid for different mass ratios. 45

3.5 Mass dependence of the time relaxation of TSAC function of an isotopic two component fluid. 50

3.6 Concentration dependence of the time relaxation of TSAC function of an isotopic two component fluid. 51

3.7 Mass dependence of shear viscosity of an isotopic two component fluid. 53

3.8 Concentration dependence of shear viscosity of an isotopic two component fluid, for $m_2/m_1 < 1$. 54

3.9 Concentration dependence of shear viscosity of an isotopic two component fluid for $m_2/m_1 > 1$. 56

3.10 Comparison of variation of normalised shear viscosity with mass ratio at $c=0.25$ for an isotopic fluid, with the variations predicted by the empirical models. 60
3.11 Comparison of variation of normalised shear viscosity with mass ratio at c=0.50 for an isotopic fluid, with the variations predicted by the empirical models. .. 60

3.12 Comparison of variation of normalised shear viscosity with mass ratio at c=0.75 for an isotopic fluid, with the variations predicted by the empirical models. .. 61

3.13 Comparison of variation of normalised shear viscosity with mass ratio at c=0.25 and at c=0.75 for an isotopic fluid, with the variations predicted by the empirical models. 61

5.1 Behaviour of frequency of oscillations of the constituent particles of fluid with respect to variation in width of the channel to which the fluid is confined (in one direction only). 85

5.2 Behaviour of the time relaxation of TSAC function at different widths (shown by long arrows) of the channel to which the fluid is confined (in one direction only). 86

5.3 Behaviour of shear viscosity of an equimolar Ar-Kr mixture with respect to variation in width of the channel to which the fluid is confined (in one direction only). 88

5.4 Behaviour of shear viscosity of an isotopic LJ fluid with respect to variation in width of the confining channel (in one direction only) for x=0.25. ... 91

5.5 Behaviour of shear viscosity of an isotopic LJ fluid with respect to variation in width of the confining channel (in one direction only) for x=0.50. ... 91

5.6 Behaviour of shear viscosity of an isotopic LJ fluid with respect to variation in width of the confining channel (in one direction only) for x=0.75. ... 92
5.7 Behaviour of shear viscosity of an isotopic LJ fluid with respect to variation in width of the confining channel (in one direction only) for $m_2/m_1 = 2$. .. 92

5.8 Behaviour of shear viscosity of an isotopic LJ fluid with respect to variation in width of the confining channel (in one direction only) for $m_2/m_1 = 5$. .. 93

5.9 Behaviour of shear viscosity of an isotopic LJ fluid with respect to variation in width of the confining channel (in one direction only) for $m_2/m_1 = 10$. ... 93