Table of Contents

Abstract iii

Table of Contents ix

1 Introduction 1

2 Transverse Stress Auto Correlation Function and Shear Viscosity of Two Component Fluids 20
2.1 General Formalism 21
2.2 Sum Rules of the TSAC Function 26
2.2.1 Expressions for the Sum Rules 26
2.2.2 Angular Integrations 29
2.3 General Expression for Shear Viscosity 30
2.4 Results and Discussion 33
2.4.1 Ar-Kr System 33
2.4.2 Time Evolution of TSAC function 36
2.4.3 Shear Viscosity 37
2.5 Summary and Conclusions 38

3 Isotopic Mixture: Mass Dependence of Shear Viscosity 40
3.1 Analytical Expressions of the Sum Rules of TSAC function 41
3.2 Results and Discussion 43
3.2.1 Mass and Concentration Dependence of Sum Rules 43
3.2.2 Mass Dependence of TSAC Function 49
3.2.3 Concentration Dependence of TSAC Function 50
3.2.4 Mass Dependence of Shear Viscosity 52
3.2.5 Concentration Dependence of Shear Viscosity 54
3.3 Summary and Conclusions 62
4 Transverse Dynamics of Two Component Fluids: Sum Rules

4.1 Theoretical Procedure

4.1.1 Relevant Time Correlation Functions

4.2 Sum Rules

4.2.1 Sum Rules for $F_{tt}(k, t)$

4.2.2 Sum Rules for $F_{tx}(k, t)$

4.2.3 Sum Rules for $F_{xx}(k, t)$

4.3 Summary and Conclusions

5 Nanofluidics: Shear Viscosity of Two Component Fluids in Nano-Channels

5.1 Generalities

5.2 Shear Viscosity

5.3 Results and Discussion

5.3.1 Mass and Concentration Dependence

5.4 Summary and Conclusions

Bibliography

Reprints