List of Tables

2.1 Values of $\int_0^\infty \phi(t)dt$ (in units of $(\frac{\sigma}{m\sigma^2})^{1/2}$) and $\int_0^\infty t^2\phi(t)dt$ at various reduced densities $n^*=n\sigma^3$ and temperature $T^*=\frac{k_B T}{\epsilon}$.

2.2 Results for shear viscosity in units of 10^{-6} Pas for Argon. η_b and η_{MD} represent the shear viscosity due to binary contribution and the simulation result [52]. The value in bracket denotes the shear viscosity at $T^*=1.26$ and $n^*=0.211$ calculated from area under MD curve of $S(t)$ [52].

3.1 Values of parameters A (in units of $(\frac{\epsilon}{m\sigma^2})^2 \times 10^5$), B (in units of $(\frac{\epsilon}{m\sigma^2})^{1/2}$) and $(\frac{\epsilon}{m\sigma^2})^2 \times 10^3$ at various reduced densities $n^*=n\sigma^3$ and reduced temperatures $T^*=\frac{k_B T}{\epsilon}$.

3.2 Values of $M_4^{(4)}$ and δ^*_4 at various reduced densities $n^*=n\sigma^3$ and reduced temperatures $T^*=\frac{k_B T}{\epsilon}$. $M_4^{(3)}$ and $M_4^{(4)}$ are in units of $(\frac{\sigma}{m\sigma^2})^3 \times 10^8$. Values in brackets do not include four body contribution.

4.1 Results of S_{23} (in units of $(\frac{\sigma}{m\sigma^2})^2$), $\omega_3(=\sqrt{S_{43}/6S_{23}})$ (in units of $\sqrt{\frac{\epsilon}{m\sigma^2}}$), S_{43} (in units of $(\frac{\sigma}{m\sigma^2})^4 \times 10^6$) and S_{42} (in units of $(\frac{\sigma}{m\sigma^2})^4 \times 10^6$) for various densities and temperatures.
4.2 Results for shear viscosity in units of 10^{-6}Pas for Argon. η_b, η_3, η_4, η and η_{MD} represent the shear viscosity due to binary contribution, three body contribution, four body contribution, sum of all these contributions and the simulation result [52]. The value in bracket denotes the shear viscosity at $T^* = 1.26$ and $n^* = 0.211$ calculated from area under MD curve of $S(t)$ [52] .. 69

5.1 Temperature, T and mass density, ρ (gm/cm^3) of six thermodynamic states of Rb investigated in the present study. σ and ϵ are the parameters of the potential .. 81

5.2 Diffusion coefficient D for six thermodynamic states of Rb. D_{our}^*, D_{prev}^*, D_{MD}^* and D_{exp} are the results obtained in present work, previous work, in the MD simulation and in experiments, respectively. 87