List of Figures

1.1 Structure of (a) Crystalline and (b) Amorphous semiconductors2
1.2 Band structure of amorphous semiconductors ..3
1.3 Classification of amorphous semiconductors ...5
1.4 Cohen, Fritzsche and Ovshinsky model (CFO) ...8
1.5 Davis and Mott model ...8
1.6 Mott-Davis and Street (MDS) model ...9
1.7 (a) Formation of charged dangling bonds. (b) Thermal energy levels
 associated with electronic transition between D^+ and D^- centers12
1.8 Three modes of thin film growth processes ...18
1.9 Qualitative representation of the influence of various depositions Parameters on
 the grain size of thin films ..23
1.10 Qualitative variation of (a) The roughness factor (b) The film densities a function
 of film thickness ...25
1.11 Schematic diagram of the main annealing processes: (a) Deformed state,
 (b) Recovered, (c) Partially recrystallized, (d) Fully recrystallized,
 (e) Grain growth, and (f) Abnormal rain growth ...28
1.12 Typical recrystallized kinetic during isothermal annealing32
1.13 The stacking of layers InSe and GaSe ..34
1.14 View of the crystal lattice of β-GaSe and β-InSe38
1.15 Phase diagram for In-Se binary alloys ...42
1.16 Phase diagram for Ga-Se binary alloys ...42
1.17 Phase diagram for Sb-Se binary alloys ...43
2.1 Schematic variation of volume with temperature for a glass forming material ...53
2.2 Schematic diagram of the rocking furnace ..55
2.3 Schematic diagram of the thin film coating unit used to deposit the thin films ...58
2.4 Bragg reflection ...60
2.5 Stainless steel metallic sample holder optical and electrical measurements62
2.6 Schematic diagram of the Hall sample ..64
2.7 Optical layout of monochromator-spectrograph [SOLAR TII, MS 2004]
 used to measure the transmission spectra ...65
2.8 TOF Setup, normal and sandwich electrode structure66
2.9 Schematic diagram of p-n diode for I-V characteristics67
2.10 Setup for solar cell testing ...67
3.1 Schematic illustrations of the electronic energy states, E_2, E_c, E_{ct}, E_v, and E_{vt}, in amorphous semiconductors ...73
3.2 Typical spectral dependence of the optical absorption coefficient in amorphous semiconductors ..76
3.3 Thin film deposited on a finite thick transparent substrate77
3.4 Different absorption region in the transmission spectrum78
3.5 Valence and conduction band edges due to the "electrostatic" part of the disorder potential ...84
3.6 X-ray diffractogram of a-In$_2$Se$_3$ and a-InSe thin films deposited at room temperature ...88
3.7 X-ray diffractogram of c-In$_2$Se$_3$ thin films deposited at room temperature89
3.8 X-ray diffractogram of c-In$_2$Se$_3$ thin films at temperature annealing at $T = 393$ K for $t = 30$ min ...89
3.9 Plots of transmittance as a function of wavelength of amorphous In$_2$Se$_3$ thin film in the temperature range 100-400K91
3.10 Plot of transmittance as a function of wavelength of amorphous InSe thin film in the temperature range 100-400K91
3.11 Plots of transmittance as a function of wavelength of crystalline In$_2$Se$_3$ thin film in the temperature range 100-400K92
3.12 Plots of $(\alpha h\nu)^{1/2}$ vs. $h\nu$ of amorphous In$_2$Se$_3$ thin film in the temperature range 100-400K ...92
3.13 Plots of $(\alpha h\nu)^{1/2}$ vs. $h\nu$ of amorphous InSe thin film in the temperature range 100-400K ...93
3.14 Plots of $(\alpha h\nu)^{1/2}$ vs. $h\nu$ of crystalline In$_2$Se$_3$ thin film in the temperature range 100-400K ...93
3.15 Experimental and fitted values of energy gap of amorphous In$_2$Se$_3$ thin films in the temperature range 100-400K94
3.16 Experimental and fitted values of energy gap of amorphous InSe thin films in the temperature range 100-400K94
3.17 Experimental and fitted values of energy gap of crystalline In$_2$Se$_3$ thin films in the temperature range 100-400K95
3.18 Plots between n vs. λ of In$_x$Se$_{1-x}$ ($x=0.4, 0.5, 0.6$) thin films in the temperature range 100-400K ..97
3.19 Plots between \((n^2-1)^{-1}\) vs. \((hv)^2\) of \(\text{In}_{x}\text{Se}_{1-x}\) \((x=0.4, 0.5, 0.6)\) thin film in the temperature range 100-400K

3.20 Optical energy gap as a function of \(x\) in \(\text{In}_{x}\text{Se}_{1-x}\) thin films in the temperature range 100-400K

3.21 X-ray diffractogram of \(\text{a-Ga}_x\text{Se}_{1-x}\) \((x=0.4, 0.5, 0.6, 0.7)\) thin films deposited in the room temperature

3.22 X-ray diffractogram of \(\text{c-Ga}_3\text{Se}_2\) thin films deposited at room temperature and annealing at \(T = 453\text{K}\) for \(t = 30\) min

3.23 Plots of transmittance as a function of wavelength of amorphous \(\text{Ga}_2\text{Se}_3\) thin film in the temperature range 100-400K

3.24 Plots of transmittance as a function of wavelength of amorphous \(\text{GaSe}\) thin film in the temperature range 100-400K

3.25 Plots of transmittance as a function of wavelength of amorphous \(\text{Ga}_3\text{Se}_2\) thin film in the temperature range 100-400K

3.26 Plots \((ahv)^{1/2}\) vs. \(hv\) of amorphous \(\text{Ga}_2\text{Se}_3\) thin film in the temperature range 100-400K

3.27 Plots \((ahv)^{1/2}\) vs. \(hv\) of amorphous \(\text{GaSe}\) thin film in the temperature range 100-400K

3.28 Plots \((ahv)^{1/2}\) vs. \(hv\) of amorphous \(\text{Ga}_3\text{Se}_2\) thin film in the temperature range 100-400K

3.29 Experimental and fitted values of energy gap of amorphous \(\text{Ga}_2\text{Se}_3\) thin films in the temperature range 100-400K

3.30 Experimental and fitted values of energy gap of amorphous \(\text{GaSe}\) thin films in the temperature range 100-400K

3.31 Experimental and fitted values of energy gap of amorphous \(\text{Ga}_3\text{Se}_2\) thin films in the temperature range 100-400K

3.32 Plots between \(n\) vs. \(\lambda\) of \(\text{Ga}_x\text{Se}_{1-x}\) \((x=0.4, 0.5, 0.6)\) thin films in the temperature range 100-400K

3.33 Plots between \((n^2-1)^{-1}\) vs. \((hv)^2\) of \(\text{Ga}_x\text{Se}_{1-x}\) \((x=0.4, 0.5, 0.6)\) thin film in the temperature range 100-400K

3.34 Optical energy gap as a function of \(x\) in \(\text{Ga}_x\text{Se}_{1-x}\) thin films in the temperatures range 100-400K

3.35 X-ray diffractogram of \(\text{a-Sb}_7\text{Se}_3\) thin films deposited at room temperature

3.36 X-ray diffractogram of \(\text{c-Sb}_7\text{Se}_3\) thin films after annealing at \(T = 453\text{K}\)

vi
for 30 min ..113

3.37 Plot of transmittance as a function of wavelength of amorphous Sb₂Se₃ thin film in the temperature range 100-400K ..114

3.38 Plot of transmittance as a function of wavelength of amorphous SbSe thin film in the temperature range 100-400K ..115

3.39 Plot of transmittance as a function of wavelength of amorphous Sb₂Se₂ thin film in the temperature range 100-400K ..115

3.40 Plots (αhv)¹/² vs hv of amorphous Sb₂Se₃ thin film in the temperature range 100-400K ..116

3.41 Plots (αhv)¹/² vs hv of amorphous SbSe thin film in the temperature range 100-400K ..116

3.42 Plots (αhv)¹/² vs hv of amorphous Sb₂Se₂ thin film in the temperature range 100-400K ..117

3.43 Experimental and fitted values of energy gap of amorphous Sb₂Se₃ thin films in the temperature range 100-400K ..117

3.44 Experimental and fitted values of energy gap of amorphous SbSe thin films in the temperature range 100-400K ..118

3.45 Experimental and fitted values of energy gap of amorphous Sb₂Se₂ thin films in the temperature range 100-400K ..118

3.46 Plots between n vs. λ of SbₓSe₁₋ₓ (x=0.4, 0.5, 0.6) thin films in the temperature range 100-400K ..120

3.47 Plots between (n²-1)¹ vs. (hv)² of SbₓSe₁₋ₓ (x=0.4, 0.5, 0.6) thin film in the temperature range 100-400K ..121

3.48 Optical energy gap as a function of x in SbₓSe₁₋ₓ thin films in the temperatures range 100-400K ..122

3.49 Effect semiconductor band structure with temperature ..125

3.50 (a) Formation of charged dangling bonds, (b) Thermal energy levels associated with electronic transition between D⁺ and D⁻ centers126

4.1 Illustration of three modes of electrical conduction as a function of temperature in amorphous semiconductors ...137

4.2 Dependence of Ln (σ) vs. 1000/T in the range 100K-400K for as deposited (a) a-In₂Se₃ thin films (b) a-InSe thin films (c) c-In₃Se₂ thin films and (d) annealed c-In₃Se₂ thin films at 393K for 30 min ...141
4.3 Hall voltage vs. current at room temperature for as deposited (a) a-In$_2$Se$_3$ thin films (b) a-InSe thin films (c) c-In$_3$Se$_2$ thin films and (d) annealed c-In$_3$Se$_2$ thin films at 393K for 30 min ..142

4.4 Dependence of Ln (σT$^{1/2}$) vs. $T^{-1/4}$ in the range 100K-160K for as deposited (a) a-In$_2$Se$_3$ thin films (b) a-InSe thin films (c) c-In$_3$Se$_2$ thin films and (d) annealed c-In$_3$Se$_2$ thin films at 393K for 30 min ..144

4.5 Dependence of Ln (σ) vs. 1000/T in the range 100K-400K for as-deposited (a) a-Ga$_2$Se$_3$ thin films (b) a-GaSe thin films (c) a-Ga$_3$Se$_2$ thin films (d) a-Ga$_7$Se$_3$ thin films and (e) annealed c-Ga$_7$Se$_3$ thin films at 453K for 30 min ...148

4.6 Hall voltage vs. current at room temperature for as deposited (a) a-Ga$_2$Se$_3$ thin films (b) a-GaSe thin films (c) a-Ga$_3$Se$_2$ thin films (d) a-Ga$_7$Se$_3$ thin films and (e) annealed c-Ga$_7$Se$_3$ thin films at 453K for 30 min ...149

4.7 Dependence of Ln (σT$^{1/2}$) vs. $T^{-1/4}$ in the range 100K-160K for as-deposited (a) a-Ga$_2$Se$_3$ thin films (b) a-GaSe thin films (c) a-Ga$_3$Se$_2$ thin films (d) a-Ga$_7$Se$_3$ thin films and (e) annealed c-Ga$_7$Se$_3$ thin films at 453K for 30 min150

4.8 Dependence of Ln (σ) vs. 1000/T in the range 100K-400K for as-deposited (a) a-Sb$_2$Se$_3$ thin films (b) a-SbSe thin films (c) a-Sb$_3$Se$_2$ thin films (d) a-Sb$_7$Se$_3$ thin films and (e) annealed c-Sb$_7$Se$_3$ thin films at 453K for 30 min154

4.9 Hall voltage vs. current at room temperature for as deposited (a) a-Sb$_2$Se$_3$ thin films (b) a-SbSe thin films (c) a-Sb$_3$Se$_2$ (d) a-Sb$_7$Se$_3$ and (e) annealed c- Sb$_7$Se$_3$ at 453K for 30 min ..155

4.10 Dependence of Ln (σT$^{1/2}$) vs. $T^{-1/4}$ in the range 100K-160K for as-deposited (a) a-Sb$_2$Se$_3$ thin films (b) a-SbSe thin films (c) a-Sb$_3$Se$_2$ (d) a-Sb$_7$Se$_3$ and (e) annealed c- Sb$_7$Se$_3$ at 453K for 30 min ..156

4.11 Photocurrent response with time for In$_2$Se$_3$ and InSe thin films ..162

4.12 Photocurrent response with time for Ga$_2$Se$_3$ and GaSe thin films ..163

4.13 Photocurrent response with time for Ga$_2$Se$_3$ and SbSe thin films ..164

4.14 Spectral response vs. wavelength of In$_2$Se$_3$, InSe, Ga$_2$Se$_3$, GaSe, Sb$_2$Se$_3$ and SbSe thin films at room temperature ..165

4.15 Effects of deep and shallow traps ..167

4.16 TOF circuit diagram ...168

4.17 Shape of electrical pulse from semiconductor material ..170

4.18 Photocurrent response with time for In$_2$Se$_3$ and InSe thin films ..171
4.19 Photocurrent response with time for Ga$_2$Se$_3$ and GaSe thin films.............172
4.20 Photocurrent response with time for Sb$_2$Se$_3$ and SbSe thin films.............173
4.21 Schematic diagram of a solar cell ..177
4.22 The spectrum of sunlight ...177
4.23 Efficiency for various cell technologies measured under standard laboratory
test conditions ...178
4.24 Schematic diagram for Measuring the I-V characteristic of diode180
4.25 Setup of test solar cell ..181
4.26 p-n junction of diode and solar cell sample ...182
4.27 $\ln(I_0)$ vs. V_A p-Sb$_2$Se$_3$ / n-In$_3$Se$_2$ for pn junction diode183
4.28 $\ln(I_0)$ vs. V_A p-Ga$_7$Se$_3$ / n-Sb$_7$Se$_3$ for pn junction of a diode183
4.29 $\ln(I_0)$ vs. V_A p-Sb$_2$Se$_3$ / n-Sb$_2$Se$_2$, p-SbSe / n-Sb$_2$Se$_2$, p-Sb$_7$Se$_3$ / n-Sb$_7$Se$_3$
and p-SbSe / n-Sb$_7$Se$_3$ for pn junction of a diode ..184
4.30 Current –Voltage curve of p-Sb$_2$Se$_3$ / n-In$_3$Se$_2$ diode thin film185
4.31 I-V curve of p-Ga$_7$Se$_3$ / n-Sb$_7$Se$_3$ diode thin film185
4.32 I-V curve characteristics of SbSe diodes thin film186
4.33 Optical energy gaps of M$_x$Se$_{1-x}$ (M = In, Ga, Sb) (x= 0.4, 0.5, 0.6) thin films
at room temperature ...188
4.34 I-V characteristics of solar cell from p-In$_2$Se$_3$ / n-In$_3$Se$_2$ thin film188
4.35 I-V characteristics of solar cell from p-Ga$_2$Se$_3$ / n-In$_3$Se$_2$ thin film189
4.35 I-V characteristics of solar cell from p-Ga$_2$Se$_3$ / p-In$_2$Se$_3$ / n-In$_3$Se$_2$ thin film...189
4.37 I-V characteristics of solar cell from p-Se$_{0.15}$Te$_{0.85}$ / p-In$_2$Se$_3$ / n-In$_3$Se$_2$
thin film ...190
4.38 I-V characteristics of solar cell under illumination for
p-Ga$_2$Se$_3$ / p-In$_2$Se$_3$ / n-In$_3$Se$_2$ thin film ...190