CONTENTS

List of Figures I
List of Tables II

INTRODUCTION 1-6

REVIEW OF LITERATURE
1. Nodulation and nitrogen fixation 9-37
 1.1 Nodule initiation 11-13
 1.2 Host specificity and symbiotic effectiveness 13-16
 1.3 Leghemoglobin 16-20
 1.3.1 Isolation and properties 16-17
 1.3.2 Location and biosynthesis 17-18
 1.3.3 Physiological role of leghemoglobin 18-20
 1.4 Nitrogenase enzyme system 20-23
 1.4.1 Structure and synthesis 20
 1.4.2 Reduction of nitrogen 20-23
 1.5 Organic and inorganic nutrition and nitrogen fixation 23-26
 1.5a Photosynthesis and other related processes 23-25
 1.5b Inorganic nutrition 25-26
 1.6 Module senescence and longevity 26-27
 1.7 Effect of environmental factors on nodulations and nitrogen fixation 28-37
 1.7.1 Light 28-29
 1.7.2 Temperature 29-30
 1.7.3 pH 31
 1.7.4 Gases 31-32
 1.7.5 Nitrogenous compounds and nitrogen fixing capacity of legume-bacterium system 32-35
 1.7.6 Water stress 35-37
2. Nodulation and nitrogen fixation in relation to salt stress 37-40
3. The effect of salinisation on different facets of plant growth, metabolism and yield 40-58
 3.1 Genetic effects 41-43
 3.2 Nutritional/Ionic effects 43-44
 3.3 Germination 44-45
 3.4 Growth and development 45-46
 3.5 Leaf diffusion resistance 46-47
 3.6 Carbohydrate metabolism 48
 3.7 Nitrogen metabolism 49-52
 3.7.1 Proteins and nucleic acids 49-50
 3.7.2 Free amino acids and proline 50-52
 3.8 Photosynthesis 52-53
 3.9 Respiration 53-55
 3.10 Enzymes 55-58
4. Effects of growth regulators on nodulation and nitrogen fixation 58-69
 4.1 Auxins 58-59
 4.2 Gibberellins 59-61
 4.3 Cytokinins 61-62
 4.4 Inhibitors and other chemicals 62-65
 4.4a Aboxic acid and ethylene 62-63
 4.4b Phenolic compounds 63-64
 4.4c Other growth substances 65
 4.5 Effect of exogenously applied plant growth regulators on the plants growing under saline conditions 65-69

MATERIAL AND METHODS 70-95
1 Pot cultures 71-73
1A Raising of plants 71
1B Treatments 71-73
2 Petri dish cultures 73
3 Sampling procedure 73-74
4 Observations recorded 75-76
4A Fresh and dry weights 75-76
4B Growth rate and relative growth rate 75
5 Biochemical estimations 75-76
5A Nitrogen content 75-76
5A.1 Reagents 75-76
5A.2 Digestion 76
5A.3 Estimation 76
5B Leghemoglobin 76-77
5B.1 Reagents 76
5B.2 Extraction 76
5B.3 Precipitation 77
CONTENTS

5C Rate of nitrogenase activity 77-78
5C.1 Standardisation 78
5C.2 Calculations 78
5D Chlorophyll content 78-79
5D.1 Estimation 78-79
5D.2 Calculations 79
5E Total phenolic content 79-80
5E.1 Reagents 79
5E.2 Extraction 79
5E.3 Procedure 79-80
5F Redoximetric ascorbic acid 80
5F.1 Reagents 80
5F.2 Extraction 80
5F.3 Procedure 80
5G Estimation of total, reducing and non-reducing sugars 80-82
5G.1 Preparation of alcoholic extract 80
5G.2 Total sugars 81
5G.3 Reducing sugars 81
5G.4 Non-reducing sugars 81-82
5H Proteins 82
5H.1 Reagents 82
5H.2 Extraction 82
5H.3 Procedure 82
5I Total free amino acids 82-83
5I.1 Reagents 82-83
5I.2 Extraction 83
5I.3 Procedure 83
5J Nucleic acids content 83-84
5J.1 Extraction 83-84
5K Estimation of IAA-oxidase activity 84-85
5K.1 Reagents 84
5K.2 Extraction 84
5K.3 Assay mixture 85
5K.4 Assay 85
5L Peroxidase 85
5L.1 Reagents 85
5L.2 Procedure 85
5M Polyphenol oxidase 85-86
5M.1 Reagents 85
5M.2 Procedure 85-86
5N Glutamine synthetase (GS) activity 86-87
5N.1 Reagents 86
5N.2 Extraction 86
5N.3 Assay 86-87
5O Aspartate aminotransferase (GOT) 87-88
5O.1 Reagents 87
5O.2 Procedure 88
5P Alanine aminotransferase (GPT) 88-89
5P.1 Reagents 88-89
5P.2 Procedure 89
5Q Mineral analysis 89-90
5Q.1 Solium, Potassium and Calcium 89
5Q.2 Estimation 89
5Q.3 Chloride 89-90
5Q.4 Procedure 90
5R Extraction of growth regulatory substances 90-95
5R.1 Bioassay tests 93
5R.2 Aminos 93
5R.3 Gibberellins 93-94
5R.4 Cytokinins 94-95
5R.5 Inhibitor substances 95
6 Statistical calculations 95

RESULTS

Section 1 Studies on the effect of differential iso-osmotic levels of salinity on the germinability and subsequent early seedling strength and interaction of the same with plant growth regulating substances 97-106

1.1 Germinability 97-98
1.2 Radicle and epicotyl lengths 99-100
1.3 Number of secondary roots 100-101
1.4 Growth analysis of different crops under saline conditions during the early stages of growth 101-102
1.5 Effect of plant growth regulating substances on the germinability and early seedling growth of leguminous plants grown under various degrees of saline conditions 103-106
CONTENTS

Section 2 Growth analysis of plants at vegetative, flowering and fruiting stages grown under varying degrees of saline conditions and their interaction with plant growth regulating (PGR) substances

2.1 Behaviour of roots, stem and leaves 107-108
2.2 Growth rates of flowers and fruits 109-110

Section 3 Effects of different levels of salinisation on nodulation, nitrogen fixation and related metabolic processes in leguminous crops and its manoeuvrability through plant growth regulating substances

3.1 Nodule number 111-112
3.2 Nodule dry weight 112-113
3.3 Nitrogenase activity 113-116
3.4 Leghemoglobin content of nodules 116-118
3.5 Effect of various levels of salinity on the nitrogen content of different plant organs and their interaction with PGR substances 118-120
3.5.1 Nodules 118-119
3.5.2 Roots 119
3.5.3 Leaves and stem 119-120
3.6 Chlorophyll content in the leaves of leguminous crops in relation to saline environment and its behaviour under the influence of plant growth regulators 121-123
3.7 Leaf number per plant 123
3.8 Endogenous phenols and ascorbic acid contents in relation to salinisation and rectification of the same through plant growth regulators 124-127
3.8.1 Total phenolic content 124-126
3.8.2 Ascorbic acid content 126-127

Section 4 Effect of salinisation on the various physiological and metabolic processes and their interaction with plant growth regulators

4.1 Sugars 128-130
4.2 Proteins 130-132
4.3 Free amino acids contents 132-134
4.4 Nucleic acids 134-136
4.5 Effects of different levels of salinisation on various enzyme activities in leguminous crops and the manoeuvrability of their response through plant growth regulators 136-144
4.6 Level of different ions in the different parts of leguminous crops under saline conditions and their behaviour under the influence of plant growth regulating substances 144-150
4.6A Sodium and Potassium 145-148
4.6B Calcium 148-150
4.6C Chloride 150
4.7 Endogenous levels of different hormones in two leguminous crops under normal and saline conditions 150-156
4.7.1 Auxins 151-152
4.7.2 Gibberellins 152-153
4.7.3 Cytokinins 154-155
4.7.4 Inhibitors 155-156
4.8 Effect of different levels of salinisation alone as well as against PGR substances on yield characters at harvest in legume crops 156-157

DISCUSSION 158-177

SUMMARY AND CONCLUSIONS 178-182

BIBLIOGRAPHY 183-228