<table>
<thead>
<tr>
<th>Table No.</th>
<th>Name</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Enzymes detected in Penicillium sp.</td>
<td>20</td>
</tr>
<tr>
<td>2.2</td>
<td>Commercial xylanase preparation</td>
<td>41</td>
</tr>
<tr>
<td>4.1</td>
<td>Identification and morphological characterization of the selected isolate as per protocols of Pitt, et al., monograph on the genus Penicillium (1993, 1995)</td>
<td>77</td>
</tr>
<tr>
<td>4.2</td>
<td>Xylanase production during course of growth of P. citrinum MTCC 9620 in shake flask in SmF</td>
<td>80</td>
</tr>
<tr>
<td>4.3</td>
<td>Effect of temperature on xylanase production by P. citrinum MTCC 9620 in SmF</td>
<td>82</td>
</tr>
<tr>
<td>4.4</td>
<td>Effect of pH on xylanase production by P. citrinum MTCC 9620 in shake flask in SmF</td>
<td>84</td>
</tr>
<tr>
<td>4.5</td>
<td>Effect of agitation on xylanase production in shake flask in SmF by P. citrinum MTCC 9620</td>
<td>86</td>
</tr>
<tr>
<td>4.6</td>
<td>Effect of carbon source on xylanase production by P. citrinum MTCC 9620 in shake flask in SmF</td>
<td>90</td>
</tr>
<tr>
<td>4.7</td>
<td>Effect of inoculum on xylanase production by P. citrinum MTCC 9620 in shake flask in SmF</td>
<td>91</td>
</tr>
<tr>
<td>4.8</td>
<td>Effect of nitrogen source on xylanase production by P. citrinum MTCC 9620 in shake flask in SmF</td>
<td>92</td>
</tr>
<tr>
<td>4.9</td>
<td>Effect of additives on xylanase production by P. citrinum MTCC 9620 in shake flask in SmF</td>
<td>94</td>
</tr>
<tr>
<td>4.10</td>
<td>Effect of different treatment of sugarcane bagasse on xylanase production in SSF using P. citrinum MTCC 9620</td>
<td>98</td>
</tr>
<tr>
<td>4.11</td>
<td>Vibrational groups and modes in the FTIR spectra</td>
<td>101</td>
</tr>
<tr>
<td>4.12</td>
<td>Effect of different moistening media for xylanase production in shake flask in SSF using P. citrinum</td>
<td>104</td>
</tr>
<tr>
<td>4.13</td>
<td>Effect of inoculum size on xylanase activity by P. citrinum in SSF</td>
<td>105</td>
</tr>
<tr>
<td>4.14</td>
<td>Levels of factors chosen for the experimental design</td>
<td>106</td>
</tr>
<tr>
<td>4.15</td>
<td>Experimental design and results of the central composite design for xylanase activity</td>
<td>107</td>
</tr>
</tbody>
</table>
4.16 Analysis of variance (ANOVA) for response surface quadratic model (equation 4.1)
4.17 Predicted vs experimental values for maximum xylanase production
4.18 Effect of different nitrogen source on xylanase production by \textit{P. citrinum} in SSF
4.19 Effect of different pH, temperature, agitation, aeration, dissolved oxygen, and substrate concentration on cell mass, xylanase activity, extracellular protein content, specific activity, productivity
4.20 Effect of agitation and aeration on oxygen transfer coefficient (K\textsubscript{La})
4.21 Range of values of coefficients of equations (3.5) to (3.8).
4.22 Summary of various steps involved in the purification of xylanase for the crude extract
4.23 Effect of additives on xylanase activity
4.24 Coefficients of Power law model (equation 3.12 and 3.13)
4.25 Coefficients of weak gel model (equation 3.14) for control and xylanase-supplemented whole wheat dough samples
4.26 Coefficients for Peleg model for control and xylanase-supplemented whole wheat dough samples
4.27 Coefficients for Burger model for control and xylanase-supplemented whole wheat dough samples
4.28 Coefficients for Kelvin model for control and xylanase-supplemented whole wheat dough samples
4.29 Extensibility and stickiness properties of control and xylanase-supplemented dough
4.30 Vibrational mode of FTIR spectra of wheat flour dough
4.31 Effect of xylanase supplementation on crumb color of fresh and stored bread
4.32 Effect of xylanase supplementation on crust color of fresh and stored bread
4.33 Textural properties of bread
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.34</td>
<td>Values of coefficient of equation (3.19) control and xylanase</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>supplemented bread and control</td>
<td></td>
</tr>
<tr>
<td>4.35</td>
<td>Effect of xylanase supplementation on glass transition temperature</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>and enthalpy values in bread stored at room temperature and 4°C</td>
<td></td>
</tr>
<tr>
<td>4.36</td>
<td>Effect of xylanase supplementation on enthalpy (Avrami exponents and</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>time constants) values stored at room temperature and refrigeration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>temperature</td>
<td></td>
</tr>
<tr>
<td>4.37</td>
<td>Sensory properties of bread</td>
<td>182</td>
</tr>
</tbody>
</table>