CHAPTER 1: INTRODUCTION

CHAPTER 2: REVIEW OF LITERATURE

2.1. Pretreatments
2.1.1. Precooling
2.1.2. Hot water treatment
2.1.3. Fungicide treatment
2.2. Cold storage
2.2.1. Chilling injury in Mango
2.2.2. Chilling injury in banana
2.3. Storage atmosphere and fruit longevity
2.3.1. Modified Atmosphere Packaging (MAP)
2.3.2. CA storage
2.4. Fruit ripening
2.4.1. Ethylene fruit ripening hormone
2.4.2. Respiration
2.4.3. Textural softening during ripening
2.5. Fruit quality
2.5.1. Measurement of quality
2.5.2. Fruit Appearance
2.5.3. Fruit firmness
2.5.4. Sugar content
2.6. Postharvest oxidative stress
2.6.1. Harvest maturity
2.6.2. Storage temperature
2.6.3. Storage atmosphere
2.6.4. Ripening and ROS
2.6.5. Defense mechanism against ROS
2.6.6. Water soluble antioxidants
CHAPTER 3 : Development and validation of post-harvest treatments for Alphonso Mango and Robusta Banana for delayed ripening/increased longevity with acceptable organoleptic properties

3.1. INTRODUCTION

3.1.1. Mango

3.1.2. Banana

3.2 MATERIALS AND METHODS

3.2.1 Procurement of fruits

3.2.2 Sorting, grading and washing of fruits

3.2.3 Effect of different pre-cooling temperatures on chilling injury

3.2.3.1 Pre-cooling at different temperatures

3.2.3.2 Hot water dip followed by cooling

3.2.4. Effect of Prochloraz and hot water treatment in mango stored at RT

3.2.4.1 Prochloraz treatment

3.2.4.2 Hot water treatment

3.2.4.3 Untreated Control fruits

3.2.5 Determination of longevity, disease severity and organoleptic quality of the fruits stored at RT

3.2.5.1 Longevity

3.2.5.2 Disease severity

3.2.5.3 Organoleptic quality

3.2.6 Combined effect of Prochloraz and hot water dip on longevity

3.2.7 Determination of physiological parameters of mango stored at RT

3.2.7.1 Respiration rate

3.2.7.2 Ethylene production rate

3.2.7.3 Firmness
3.2.7.4 Total Soluble Solids (TSS)
3.2.7.5 Estimation of total sugar and starch
3.2.8 Effect of 13° C storage on ripening behavior of mango
3.2.9 Effect of 8° C storage temperature, followed by stored at RT on ripening behavior of mango
3.2.10 Effect of MAP on longevity and acceptability of mango stored at 8° C
3.2.11 Effect of 13° C storage temperature, followed by stored at RT on ripening behavior of mango
3.2.12 Effect of MAP on longevity and acceptability of mango stored at 13° C
3.2.13 Effect of CA storage on longevity and acceptability of mango stored at 8° C
3.2.13.1 Prochloraz treatment
3.2.13.2 Hot water treatment
3.2.13.3 Pre-cooling
3.2.14 Application of various post harvest storage methods in banana to delay ripening and extend the longevity of fruits
3.2.14.1 Procurement of the fruits
3.2.14.2 Sorting, grading and washing
3.2.14.3 Pre-cooling at different temperatures
3.2.14.4 Heat treatment followed by pre-cooling
3.2.15 Effect of ambient conditions on longevity and acceptability of banana
3.2.16 Effect of Ethrel treatment on longevity and acceptability of banana stored at ambient conditions
3.2.17 Effect of 8° C storage on longevity and acceptability of banana
3.2.18 Effect of 13° C storage on longevity and acceptability of banana
3.2.19 Effect of CA storage on longevity and acceptability of banana
3.2.19.1 Post CA ripening
3.2.19.2 Visual observations
3.3. EXPERIMENTAL RESULTS

3.3.2 Effect of prochloraz and hot water pre-treatments in mango during ripening at RT

3.3.2.1 Longevity and acceptability

3.3.2.2 Appearance

3.3.2.3 Pulp color

3.3.2.4 Pulp texture

3.3.2.5 Taste

3.3.2.6 Flavour

3.3.2.7 Overall acceptability

3.3.3 Respiration production rate of mango during ripening at RT

3.3.4 Ethylene production rate of mango during ripening at RT

3.3.5 Fruit texture and TSS content of mango during ripening at RT

3.3.5.1 Texture

3.3.5.2 TSS

3.3.5.3 Total sugars and starch content of mango ripened at RT

3.3.6 Effect of low temperature storage on longevity and acceptability of mango stored at 8°C and 13°C ± 1 and 90% RH

3.3.6.1 Longevity and acceptability

3.3.6.2 Appearance

3.3.6.3 Pulp color

3.3.6.4 Pulp texture

3.3.6.5 Taste

3.3.6.6 Flavour

3.3.6.7 Overall acceptability

3.3.7 Effect of low temperature storage on respiration rate

3.3.8 Effect of low temperature storage on ethylene production rate

3.3.9 Effect of low temperature storage on Texture
3.3.9.1 At 8°C (± 1 and 90% RH)
3.3.9.2 At 13°C
3.3.10 Effect of low temperature storage on TSS
3.3.10.1 At 8°C (± 1 and 90% RH)
3.3.10.2 At 13°C
3.3.11 Effect of low temperature storage on total sugars and starch content of mango stored at 8° and 13° C (± 1 and 90% RH).
3.3.12 Effect CA storage on longevity and acceptability in mango stored at 8° C
3.3.12.1 Appearance
3.3.12.2 Pulp color
3.3.12.3 Pulp texture
3.3.12.4 Taste
3.3.12.5 Flavour
3.3.12.6 Overall acceptability
3.3.13 Effect CA storage on Respiration
3.3.14 Effect CA storage on ethylene production rate in mango
3.3.15 Effect CA storage on texture
3.3.16 Effect CA storage on TSS
3.3.17 Effect CA storage on total sugars and starch content
3.3.18 Effect of 8° C on gaseous composition of modified atmosphere package of mango
3.3.19 Effect of MAP on longevity and acceptability
3.3.19.1 Stored at 8° C
3.3.19.2 Appearance
3.3.19.3 Pulp color
3.3.19.4 Pulp texture
3.3.19.5 Taste
3.3.19.6 Flavour
3.3.19.7 Overall acceptability
3.3.20 Effect of MAP on respiration and ethylene production rate at 8°C
3.3.20.1 Respiration rate
3.3.20.2 Ethylene production rate
3.3.21 Effect of MAP on Firmness and TSS content at 8°C
3.3.21.1 Firmness
3.3.21.2 TSS
3.3.22 Effect of MAP on total sugars and starch content at 8°C
3.3.22.1 Total sugar
3.3.22.2 Starch
3.3.23 Effect of 13°C on gaseous composition of modified atmosphere packed mango
3.3.24 Effect of MAP on longevity and acceptability at 13°C
3.3.24.1 Longevity and acceptability
3.3.24.2 Appearance
3.3.24.3 Pulp color
3.3.24.4 Pulp texture
3.3.24.5 Taste
3.3.24.6 Flavour
3.3.24.7 Overall acceptability
3.3.25 Effect of MAP on respiration and ethylene production rate at 13°C
3.3.25.1 Respiration rate
3.3.25.2 Ethylene production rate
3.3.26 Effect of MAP on firmness of mango stored at 13°C
3.3.27 Effect of MAP on TTS content of mango stored at 13°C
3.3.28 Effect of MAP on total sugar and starch of mango stored at 13°C
3.3.28.1 Total sugar
3.3.28.2 Starch
3.3.29 Effect of Ethrel treatment on longevity of banana stored at RT
3.3.30 Effect of low temperature storage on ripening of banana

3.3.30.1 Longevity

3.3.31 Effect of various post harvest storage methods on organoleptic quality of banana

3.3.31.1 Appearance
3.3.31.2 Pulp colour
3.3.31.3 Pulp texture
3.3.31.4 Taste
3.3.31.5 Flavor
3.3.31.6 Overall acceptability

3.3.32 Respiration rate of banana during storage at RT

3.3.33 Respiration rate of banana during storage at 8°C and 13°C

3.3.34 Ethylene production rate of banana during storage at RT

3.3.35 Ethylene production rate of banana during storage at 13°C

3.3.36 Effect of CA storage on respiration rate and ethylene production rate of banana during ripening at 25°C

3.3.36.1 Respiration rate
3.3.36.2 Ethylene rate

3.3.37 Application of various post harvest treatment methods on Firmness, total sugars and starch

3.3.37.1 Firmness
3.3.37.2 Total sugars
3.3.37.3 Starch

3.4 DISCUSSION

3.5 SUMMARY AND CONCLUSION

CHAPTER 4: Biochemical analysis – comparison of antioxidants enzymes and antioxidants levels before and after post harvest treatments

4.1 INTRODUCTION

4.2 MATERIALS AND METHODS
4.2.1 Extraction of Antioxidant Enzymes

4.2.1.1 Catalase (CAT) and superoxide dismutase (SOD)

4.2.1.2 Extraction of peroxidase (POX)

4.2.1.3 Catalase Assay

4.2.1.4 Superoxide dismutase Assay

4.2.1.5 Peroxidase Assay

4.2.1.6 Extraction of total soluble phenols (TSP)

4.2.2 Estimation of Total Phenol and 2,2-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity

4.2.2.1 Total phenol

4.2.2.2 DPPH free radical-scavenging assay

4.2.2.3 Estimation of L-Ascorbic acid content

4.2.2.4 Estimation of Carotenoids

4.3 EXPERIMENTAL RESULTS

4.3.1 Antioxidant enzyme levels in mango during pre-cooling and hot water treatments

4.3.1.1 Catalase (CAT) activity

4.3.1.2 Peroxidase (POX) activity

4.3.1.3 Superoxide Dismutase (SOD) activity

4.3.2 Antioxidant enzyme levels in mango during ripening at RT (26° C - 33° C and 60-70 % RH)

4.3.2.1 CAT activity

4.3.2.2 SOD activity

4.3.2.3 POX activity

4.3.2.4 Total soluble phenols (TSP)

4.3.2.5 Ascorbic acid (AA)

4.3.2.6 Carotenoids

4.3.2.7 DPPH radical scavenging activity

4.3.3 Antioxidant enzyme levels in mango during storage at 8° C

4.3.3.1 CAT activity

4.3.3.2 POX activity

4.3.3.3 Super oxide dismutase activity (SOD)
4.3.4 Antioxidant enzyme levels in mango during ripening at 8°C (± 1 and 90% RH)
4.3.4.1 Total Soluble phenols (TSP)
4.3.4.2 Ascorbic acid (AA)
4.3.4.3 Carotenoids
4.3.5 DPPH radical scavenging capacity of mango during storage 8°C
4.3.6 Antioxidant enzyme levels in mango stored at 13°C
4.3.6.1 Catalase activity (CAT)
4.3.6.2 Peroxidase activity (POX)
4.3.6.3 Superoxide dismutase activity (SOD)
4.3.7 Antioxidants levels in mango during ripening at 13°C
4.3.7.1 Total soluble phenols (TSP)
4.3.7.2 Ascorbic acid (AA)
4.3.7.3 Carotenoids
4.3.8 DPPH radical scavenging capacity of mango during ripening at 13°C
4.3.9 Effect of controlled atmosphere storage (CAS) on Antioxidant enzyme levels of mango
4.3.9.1 Catalase activity (CAT)
4.3.9.2 Peroxidase activity (POX)
4.3.9.3 Superoxide dismutase activity (SOD)
4.3.10 Effect of controlled atmosphere storage (CAS) on Antioxidant levels of mango
4.3.10.1 Total soluble phenols (TSP)
4.3.10.2 Ascorbic acid (AA)
4.3.10.3 Carotenoids
4.3.11 Effect of controlled atmosphere storage (CAS) on DPPH- Radical scavenging activity of mango
4.3.12 Effect of MAP on antioxidant enzyme levels of mango stored at 8°C
4.3.12.1 Catalase activity (CAT)
4.3.12.2 Peroxidase activity (POX)
4.3.12.3 Superoxide dismutase activity (SOD)
4.3.13 Effect of MAP on antioxidant levels of mango stored at 8°C
4.3.13.1 Total soluble phenols (TSP)
4.3.13.2 Ascorbic acid (AA)
4.3.13.3 Carotenoids
4.3.14 Effect of MAP on of DPPH radical scavenging activity of mango stored at 8°C
4.3.15 Effect of MAP on antioxidant enzyme levels of mango stored at 13°C
4.3.15.1 Catalase activity (CAT)
4.3.15.2 Peroxidase activity (POX)
4.3.15.3 Superoxide dismutase activity (SOD)
4.3.16 Effect of MAP on antioxidant levels of mango stored at 13°C
4.3.16.1 Total Soluble Phenols (TSP)
4.3.16.2 Ascorbic acid (AA)
4.3.16.3 Carotenoids
4.3.17 Effect of MAP on DPPH Radical scavenging capacity of mango stored at 13°C
4.3.18 Antioxidant enzyme levels in banana stored at RT (26-H 60.70%)
4.3.18.1 CAT activity
4.3.18.2 POX activity
4.3.18.3 SOD activity
4.3.19 Effect of ethrel treatment on antioxidant enzyme levels in banana during ripening at RT
4.3.19.1 CAT activity
4.3.19.2 POX activity
4.3.19.3 SOD activity
4.3.20 Effect of Ethrel treatment on antioxidant enzyme levels in banana during ripening at 13°C
4.3.20.1 CAT activity
4.3.20.2 POX activity
4.3.20.3 SOD activity
4.3.21 Antioxidant levels of banana during storage at 8° C
 4.3.21.1 CAT activity
 4.3.21.2 POX activity
 4.3.21.3 SOD activity
4.3.22 Effect of CA storage on antioxidant enzymes
 4.3.22.1 CAT
 4.3.22.2 POX
 4.3.22.3 SOD
4.3.23 Effect of various post harvest treatments on total phenol, ascorbic acid and DPPH scavenging activity
 4.3.23.1 Total phenols
 4.3.23.2 DPPH radical scavenging activity
4.4 DISCUSSION
4.5 SUMMARY AND CONCLUSION

CHAPTER 5 : REFERENCES