The present investigation was undertaken to study the impact of environmental stressors i.e. residential density and noise on perceived stress; everyday errors; health complaints; experience and expression of anger that is state anger, trait anger, anger-in, anger-out, anger control, anger expression subscales of STAXI; MHI factors of anxiety, depression, loss of behavioural/emotional control, general positive affect, emotional ties and life satisfaction, the higher order factors of psychological distress and psychological well-being and the general factor of mental health (mental health index); satisfaction with life, positive affect and negative affect. The role of gender differences in all these variables was also explored.

The sample for the present investigation consisted of three hundred and twenty subjects (160 males and 160 females) in the age range of 25 to 40 years, living within a 500 metres radius of the main railway track in Ambala City. Only those individuals who had a minimum of two years continuous stay in that residential area were included in the study.

Residential density was calculated by dividing the number of people living in the home by the number of rooms in the house (Evans et al., 1989). The subjective perception of noise of the subjects was assessed using the Noise Sensitivity Scale (Weinstein, 1978). Further, the subjects were administered the Perceived Stress Scale (Cohen, Kamarck, & Merelstein, 1983), Everyday Errors Questionnaire (Smith & Stansfeld, 1986), Adult Health Checklist (Forgays, 1994), State–Trait Anger Expression Inventory (Spielberger et al., 1983), Mental Health Index (Forgays, 1994), State–Trait Anger Expression Inventory (Spielberger et al., 1983), Mental Health Index (Forgays, 1994).
Summary

Inventory (Veit & Ware, 1983), Satisfaction with Life Scale (Diener et al., 1985) and Positive and Negative Affect Schedule (Watson, Clark, & Tellegen, 1988).

Means and standard deviations were computed and analysis of variance was conducted in order to analyze the raw data that consisted of scores on all the above-mentioned twenty one variables.

The significant findings of the analysis of variance are summed up below:

1. Individuals living under conditions of high and low residential density differ significantly on perceived stress with individuals living under high residential density conditions scoring higher on perceived stress than individuals living under low residential density conditions. The two-way interaction of noise sensitivity x gender also emerged significant. However, the three-way interaction of residential density x noise sensitivity x gender emerged significant and revealed that residential density moderates the effects of noise sensitivity and gender in producing perceived stress. Mean scores revealed that perceived stress is most pronounced in females high on noise sensitivity living under conditions of high residential density and least pronounced in males low on noise sensitivity living under conditions of low residential density.

2. In respect of everyday errors, males and females differed significantly. Mean scores revealed that females scored higher on everyday errors as compared to males.

3. As regards health complaints, males and females differed significantly. Mean scores revealed that females were higher than males on health complaints. The two-way interaction of residential density x noise sensitivity also emerged significant.
and revealed that noise sensitivity plays a more powerful role in the context of health complaints vis a vis residential density. Mean scores revealed that the maximum number of health complaints is reported by individuals high on noise sensitivity and living under high residential density conditions while the minimum number of health complaints was reported by individuals low on noise sensitivity but living under high residential density.

4. As regards the STAXI subscales, the two-way interaction of residential density x gender emerged significant in respect of state anger. The lowest scores on state anger were reported by females living under low residential density conditions. The highest scores on state anger were also reported by females but living under high residential density conditions. Under high residential density, females reported higher state anger while under low residential density, males reported higher state anger.

5. In respect of trait anger, individuals high and low on noise sensitivity differed significantly on trait anger. Mean scores revealed that individuals high on noise sensitivity scored higher on trait anger than individuals low on noise sensitivity. The two-way interaction of residential density x noise sensitivity also emerged significant showing that residential density moderates the effect of noise sensitivity in producing trait anger. The highest scores on trait anger were reported by subjects high on noise sensitivity living under high residential density conditions while the lowest scores on trait anger were reported by subjects low on noise sensitivity living under high residential density conditions.

6. Individuals living under high and low residential density conditions as well as males and females differed significantly on
the anxiety factor of MHI with individuals living under high residential density conditions and females scoring higher on anxiety. The three-way interaction effect of residential density x noise sensitivity x gender also emerged significant. Mean scores revealed that females high on noise sensitivity living under high residential density conditions scored the highest on anxiety while males low on noise sensitivity living under low residential density conditions scored the lowest on anxiety.

7. Results on the depression factor of MHI revealed that though individuals living under high residential density conditions differed significantly from individuals living under low residential density conditions scoring higher than the latter yet this main effect of residential density was moderated by the gender of the participants. The interaction effect of residential density x gender emerged significant with females living under high residential density conditions having the highest scores on depression and females living under low residential density conditions having the lowest scores.

8. In case of the loss of behavioural/emotional control factor of MHI, all three main effects of residential density, noise sensitivity and gender emerged significant. The three-way interaction effect of residential density x noise sensitivity x gender also came out to be significant. Females high on noise sensitivity and living under high residential density conditions scored the highest on loss of behavioural/emotional control while males high on noise sensitivity and living under low residential density conditions scored the lowest. Thus, the high residential density-high noise sensitivity combination emerged as the sole contributor in explaining gender differences in loss of behavioural/emotional control. The other combinations of residential density-noise sensitivity failed to differentiate between male and
female participants.

9. As regards the general positive affect factor of MHI, the main effect of residential density emerged significant with individuals living under high residential density conditions scoring lower on general positive affect than individuals living under low residential density conditions. The two-way interaction of residential density x gender also emerged significant. This showed that the effect of residential density on general positive affect is moderated by the gender of the participants. Mean scores revealed that females living under high residential density conditions scored the minimum on general positive affect while females living under low residential density conditions scored the maximum. Thus, gender differences were eliminated in low residential density conditions while they were marked under high residential density conditions.

10. In respect of the emotional ties factor of MHI, individuals living under high and low residential density conditions differed significantly. Mean scores revealed that individuals living under high residential density conditions scored lower on emotional ties than individuals living under low residential density conditions.

11. Individuals living under high and low residential density conditions differed significantly on the life satisfaction factor of MHI. Mean scores revealed that individuals living under high residential density conditions scored lower on life satisfaction than individuals living under low residential density conditions. Males and females also differed significantly on life satisfaction. Mean scores revealed that males scored higher on life satisfaction as compared to females.

12. As regards the psychological distress factor of MHI, the main effects of residential density and gender emerged significant.
However, the three-way interaction effect of residential density x noise sensitivity x gender also emerged significant thereby showing that noise sensitivity moderates the effects of residential density and gender on psychological distress. Mean scores revealed that females high on noise sensitivity living under conditions of high residential density scored the highest on psychological distress while females high on noise sensitivity but living under low residential density conditions scored the lowest on psychological distress.

13. In respect of the psychological well-being factor of MHI, the main effect of residential density emerged significant. However, it was moderated by gender of the participants since the two-way interaction of residential density x gender also emerged significant. Mean scores revealed that females living under low residential density conditions scored the highest on psychological well-being while females living under high residential density scored the lowest on psychological well-being.

14. As regards the mental health index, the main effects of residential density and gender emerged significant. However, the two-way interaction of residential density x gender also emerged significant. Mean scores revealed that females living under high residential density conditions scored the lowest on mental health index while females living under low residential density conditions scored the highest on mental health index. The high residential density-female combination emerged as the sole contributor for explaining variance in mental health.

15. As regards, satisfaction with life (SWLS), males and females differed significantly. Mean scores revealed that females scored higher on satisfaction with life than males.
16. In respect of positive affect (PANAS), males and females differed significantly. Mean scores revealed that males scored higher on positive affect than females. Further, individuals living under high and low residential density conditions differed significantly in respect of negative affect (PANAS). Mean scores revealed that individuals living under high residential density conditions scored higher on negative affect than individuals living under low residential density conditions. Also, males and females differed significantly on negative affect with mean scores revealing that females scored higher than males.