List of Figures

2.1 The four configurations of the lattice for substitutional impurity. (a) Perfect host lattice (b) strained lattice due to external force, (c) strained lattice with one atom removed, and (d) an impurity atom placed at the vacant lattice site. .. 25

2.2 Interionic potential $\Phi_{HH}(r)$ versus r for Cr. ϕ_{HH}^E is the free electron contribution, ϕ_{HH}^H arises from the finite d-bandwidth and ϕ_{HH}^f arises from the shift in the d-band center due to s-d hybridization. 31

2.3 $\Delta\phi(r)$ versus r for V, Mn, Fe, Zr, Nb, Mo, Ta and W impurities in Cr. ... 32

2.4 The magnitude of the atomic displacements $|\bar{u}(r)|$ up to 5NN’s are shown for V, Mn, Fe, Zr, Nb, Mo, W and Ta impurities in Cr. 33

2.5 Interionic potential $\Phi_{HH}(r)$ versus r for V. The description of ϕ_{HH}^E, ϕ_{HH}^H and ϕ_{HH}^f is the same as given in Fig.2.2. 39

2.6 $\Delta\phi(r)$ versus r for Ti, Cr, Mn, Fe, Nb, Mo, Ta, and W impurities in V. .. 40

2.7 The magnitude of the atomic displacements $|\bar{u}(r)|$ up to 5NN’s are shown for Ti, Cr, Mn, Fe, Nb, Mo, Ta, and W impurities in V. 41

2.8 $u(r)$ as function of $a^{-1}(da/dc)$ for different NN’s of the impurities. Triangles, square, open circle and rhombus represents $u(r)$ for 1NN’s, 2NN’s, 3NN’s and 4NN’s of the impurities. The dotted lines are shown for visual guidance. .. 42

2.9 Interionic potential $\Phi_{HH}(r)$ versus r for Fe. The description of ϕ_{HH}^E, ϕ_{HH}^H and ϕ_{HH}^f is the same as given in Fig.2.2. 48
2.10 $\Delta \phi(r)$ versus r for Cr, Mn, Ni, Cu, Nb, Mo, W, and Pt impurities in Fe. ... 49

2.11 Magnitude of the atomic displacements $|u(\vec{r})|$ as function of atomic number of the impurity. The lines joining the points are for the visual guidance. ... 50

2.12 Interionic potential $\Phi_{HH}(r)$ versus r for Nb. The description of ϕ_{HH}^{FE}, ϕ_{HH}^{b} and ϕ_{HH}^{f} is the same as given in Fig. 2.2. .. 57

2.13 $\Delta \phi(r)$ versus r for V, Cr, Mn, Fe, Zr, Mo, Ta and W impurities in Nb. 58

2.14 Magnitude of the displacements $|u(\vec{r})|$ as function of atomic number of the impurity in Nb. The lines joining the points are for visual guidance. ... 59

2.15 Interionic potential $\Phi_{HH}(r)$ versus r for Mo. The description of ϕ_{HH}^{FE}, ϕ_{HH}^{b} and ϕ_{HH}^{f} is the same as given in Fig. 2.2. .. 65

2.16 $\Delta \phi(r)$ versus r for V, Cr, Mn, Fe, Zr, Nb, Ta and W impurities in Mo. 66

2.17 Magnitude of the displacements $|u(\vec{r})|$ as function of atomic number of the impurity in Mo. The lines joining the points are for visual guidance. ... 67

3.1 Substitutional impurity in the fcc lattice at the origin. Solid circles and open circle represents host atoms and impurity atom respectively. 79

3.2 Interionic potential $\Phi_{HH}(r)$ versus r for Ni. The description of ϕ_{HH}^{FE}, ϕ_{HH}^{b} and ϕ_{HH}^{f} is the same as given in the text. ... 83

3.3 $\Delta \phi(r)$ versus r for Fe, Co, Cu, Nb, Mo, Pd and Pt impurities in Ni. 84

3.4 Magnitude of the displacements $|u(\vec{r})|$ as function of atomic number of the impurity in Ni. The inset figure shows Ashcroft core radii r_c and d core radius r_d of impurities in the same order as mentioned on x axis. The lines joining the points are for visual guidance. 85

3.5 Interionic potential $\Phi_{HH}(r)$ versus r for Cu. The description of ϕ_{HH}^{FE}, ϕ_{HH}^{b} and ϕ_{HH}^{f} is the same as given in the text. ... 92

3.6 The $\Delta \phi(r)$ versus r for Co, Ni, Pd, Ag, Pt and Au impurities in Cu. 93

viii
3.7 Magnitude of the displacements $|\vec{u}(r)|$ as function of atomic number of impurities in Cu. The solid lines are for visual guidance. 94

3.8 The magnitude of the atomic displacements $|\vec{u}(r)|$ are compared with the experimental value for Co, Ni, Pd, Ag, Pt and Au impurities in Cu [9]. .. 95

3.9 Interionic potential $\Phi_{HH}(r)$ versus r for Pd. The description of Φ_{FE}, Φ_{HH} and ϕ_{HH} is the same as given in the text. 100

3.10 $\Delta\phi(r)$ versus r for Fe, Co, Ni, Cu, Nb, Mo, Pt and Au impurities in Pd. .. 101

3.11 Magnitude of the displacements $|\vec{u}(r)|$ as function of atomic number of the impurities in Pd. The inset figure shows Ashcroft core radii r_e and d core radius (r_d) of impurities in the same order as mentioned on x axis. The lines joining the points are for the visual guidance. 102

4.1 The octahedral interstice at the center of the Ni (FCC) unit Cell is shown above with the six atoms that bound it. The open circle marks the site of self-interstitial defect. .. 113

4.2 The three configurations of the lattice for an interstitial impurity. (a) Perfect host lattice, (b) strained lattice due to external force, (c) an impurity is inserted at an interstitial site. 114

4.3 The variation of Embedding function $F(\rho)$ with background electron density for Ni. The embedding energy is in (eV) and electron density is in A^{-3} .. 116

4.4 The variation of atomic electron densities $\rho(r)$ versus r for Ni, computed using densities of s and d electrons, which are associated with their Hartree-Fock wave functions. The atomic electron densities are in A^{-3} units and r is in A. 117

4.5 The effective charge $Z(R)$ versus R, used to define pair interaction for Cu, Ni, Pd, Pt and Au. Z is in units of electron charge and R is in A. 121
5.1 The octahedral site at the center of the (FCC) unit Cell is shown above with atoms up to 3NN's shell. The open circle marks position of interstitial hydrogen. 129

5.2 Flow chart describing the construction of ionic pseudopotential for an atom. 136

5.3 Ionic pseudopotential for Hydrogen (a.u.) calculated using density functional theory. 138

5.4 Flow chart describing the computational procedure for the calculation of the total energy of a solid. 139

5.5 The s, p and d components of ionic pseudopotential (a.u.) for Cu, generated using DFT. 140

5.6 The s, p and d components of ionic pseudopotential (a.u.) for Pd, generated using DFT. 141