GENERAL REMARKS

1) All melting points are uncorrected and the temperatures are expressed in degree Celsius and were taken on precision melting point apparatus from DBK Instruments.

2) The compound numbers, scheme numbers given in each section refers to that particular section only.

3) All solvents were not distilled before use and are of LR grade only.

4) The reaction progress was monitored by the thin layer plates pre-coated with silica gel 60 F254 (Merck)

5) Chromatography: Column chromatography was performed using silica gel 60-120 (MERCK). The yields unless otherwise mentioned are for the pure product. All the raw materials, reagents and solvents used were of commercial grade only.

6) The IR spectra were recorded on potassium bromide (KBr) disks by using Bruker IR spectrophotometer and absorbance is expressed in cm$^{-1}$.

7) 1H-NMR spectra: Unless otherwise stated proton spectra were acquired on Mercury Plus Varian 400 MHz spectrophotometer using TMS as an internal Standard. Chemical shifts are quoted in δ values in ppm shift relative to TMS in CDCl$_3$, DMSO-d_6. Coupling constants (J) are reported in Hertz, with signal multiplicity designated as singlet (s), doublet (d), triplet (t), doublet of doublet (dd), quartet (q), multiplet (m) and broad (b) values.

8) Mass spectra were recorded at ionization energy 70eV on Micro Mass Quatrrro using (ESI) showing (M+1)$^+$ peak as a molecular ion peak.