TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>2</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>5</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>6</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>9</td>
</tr>
<tr>
<td>CHAPTER 1 : IMMUNOBIOLOGY OF Treg AND Th17 CELLS</td>
<td></td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>13</td>
</tr>
<tr>
<td>1.2 Discovery of Treg cells</td>
<td>15</td>
</tr>
<tr>
<td>1.3 Subsets of Treg cells</td>
<td>17</td>
</tr>
<tr>
<td>1.4 Foxp3 and Treg cell differentiation</td>
<td>21</td>
</tr>
<tr>
<td>1.5 Mechanisms of Treg cell differentiation</td>
<td>22</td>
</tr>
<tr>
<td>1.6 Mechanisms of Foxp3+ Treg cell mediated suppression</td>
<td>24</td>
</tr>
<tr>
<td>1.7 Treg cells and autoimmune diseases</td>
<td>25</td>
</tr>
<tr>
<td>1.8 Impaired Treg cell regulation in autoimmunity</td>
<td>28</td>
</tr>
<tr>
<td>1.8.1 Inadequate numbers of Treg cells</td>
<td>29</td>
</tr>
<tr>
<td>1.8.2 Defects in Treg cell function</td>
<td>30</td>
</tr>
<tr>
<td>1.8.3 Resistance of effector T cells to suppression</td>
<td>30</td>
</tr>
<tr>
<td>1.9 Treg cells and rheumatoid arthritis (RA)</td>
<td>31</td>
</tr>
<tr>
<td>1.9.1 Causes of Treg cell functional impairment in RA</td>
<td>32</td>
</tr>
<tr>
<td>1.9.2 Treg cells as therapeutic targets in RA</td>
<td>33</td>
</tr>
<tr>
<td>1.10 Effects of approved drugs on Treg cells</td>
<td>34</td>
</tr>
<tr>
<td>1.11 Experimental drugs targeting Treg cells</td>
<td>36</td>
</tr>
<tr>
<td>1.12 Direct approaches to enhance Treg cell function</td>
<td>38</td>
</tr>
</tbody>
</table>
1.12.1 *Ex vivo* expansion of Treg cells 38
1.12.2 *In vitro* induction of Treg cells 38
1.12.3 *In vivo* expansion and induction of Treg cells 39
1.13 Indirect approaches to enhance Treg cell function 41
 1.13.1 Inhibition of pro-inflammatory cytokines 41
 1.13.2 Enhancing the responsiveness of effector cells to suppression 42
 1.13.3 Combination therapy 42
1.14 Pitfalls of cellular therapy 44
1.15 Future of Treg cell therapy 44
1.16 Immunobiology of Th17 cells 46
1.17 Differentiation of Th17 cells 47
1.18 Transcription factors in Th17 differentiation 50
1.19 Effector cytokines of Th17 cells 52
1.20 Reciprocal relationships between Th17 and Treg cells 55
1.21 Th17 cells in autoimmune diseases 59
1.22 Th17 cells and autoimmune arthritis 60
1.23 Mechanisms of IL-17 driven joint destruction 61
1.24 Current and emerging therapies 66

CHAPTER 2: OVERVIEW ON ROLE OF IL-3 IN OSTEOIMMUNOLOGY

2.1 Osteoimmunology: interplay between the immune system and bone metabolism 71
2.2 Overview of the cells in the skeletal system 73
2.3 Direct influence of the immune system on bone 76
2.4 Regulation of osteoclastogenesis by T cells 79
2.5 Clinical implications 82
2.6 Interleukin-3 (IL-3) 83
2.7 Sources of IL-3 84
2.8 Structure of IL-3 84
2.9 Receptors of IL-3 85
2.10 Intracellular signalling by IL-3 87
2.11 Biological activities of IL-3 89
2.12 Role of IL-3 in osteoclast differentiation and bone resorption 92
2.13 IL-3 and RA 94

CHAPTER 3: MATERIALS AND METHODS

3.1 Animals 96
3.2 Source of materials 96

 3.2.1 Media and serum 96
 3.2.2 General reagents and plastic ware 96
 3.2.3 Cytokines and antibodies 97

3.3 In vitro cell culture assays 98

 3.3.1 Isolation of naïve CD4+ T lymphocytes 98
 3.3.2 In vitro Treg cell development 99
 3.3.3 In vitro Th17 cell development 100
 3.3.4 In vitro suppression assay 100
 3.3.5 T cell proliferation assay 100
 3.3.6 Coculture of osteoclasts with Tregs 101

3.4 Flow cytometric analysis 101
3.5 Cytometric bead array (CBA) Flex 103
3.6 Reverse transcriptase polymerase chain reaction (RT-PCR) 107

 3.6.1 Isolation of RNA 107
 3.6.2 Quantification of RNA 108
 3.6.3 cDNA synthesis 109
 3.6.4 PCR 110
CHAPTER 4: ROLE OF IL-3 IN DEVELOPMENT AND FUNCTION OF Treg CELLS

4.1 Introduction

4.2 Results

4.2.1 *In vitro* generation of iTreg cells

4.2.2 IL-3Rα is expressed by Treg cells

4.2.3 IL-3 induces the proliferation of iTreg cells

4.2.4 IL-3 enhances the percentage of Foxp3+ iTreg cells

4.2.5 IL-3 enhances the percentage of Foxp3+ nTreg cells

in vitro

4.2.6 IL-3 expanded Treg cells express CTLA-4 and GITR

4.2.7 IL-3 expanded Treg cells suppress the proliferation of effector T cells

4.2.8 IL-3 enhances percentage of Foxp3+ Treg cells through secretion of IL-2

4.2.9 IL-3 enhances percentage of Foxp3+ Treg cells indirectly through secretion of IL-2 by non-Treg cells

4.2.10 IL-3 synergies with IL-2 for activation of STAT5
4.2.11 IL-3 generated Treg cells inhibit osteoclastogenesis

4.3 Discussion

CHAPTER 5 : ROLE OF IL-3 IN DEVELOPMENT AND FUNCTION OF Th17 CELLS

5.1 Introduction

5.2 Results

5.2.1 IL-3Rα is expressed by Th17 cells

5.2.2 IL-3 inhibits the in vitro differentiation of Th17 cells

5.2.3 IL-3 inhibits the differentiation of Th17 cells by inhibiting the induction of Rorγt

5.2.4 IL-3 inhibits the secretion of Th17 effector cytokines

5.3 Discussion

CHAPTER 6 : IN VIVO ROLE OF IL-3 IN CIA MICE

6.1 Introduction

6.2 Results

6.2.1 Development and characterization of CIA model in DBA/1J mice

6.2.2 IL-3 reduces arthritic score and inflammation, and prevents damage to bone and cartilage tissues in CIA mice

6.2.3 IL-3 maintains normal bone structure in mice
6.2.4 IL-3 reduces severity of arthritis by promoting \textit{in vivo} expansion of Foxp3$^+$ Treg cells in CIA mice

6.2.5 IL-3 inhibits the differentiation of CD4$^+$ Rorγ^+ Th17 cells in CIA mice

6.2.6 IL-3 decreases production of pro-inflammatory cytokines and increases anti-inflammatory cytokines in CIA mice

6.3 Discussion

CHAPTER 7: GENERAL DISCUSSION AND CONCLUSIONS

PUBLICATIONS FROM RELATED WORK

BIBLIOGRAPHY

APPENDIX