List of Figures

2.1 Feynmann diagram representing the deep inelastic scattering of e-p via exchange of a gauge boson. .. 8

2.2 HERA I and II neutral current e+p cross sections compared to HERAPDF1.5 theory predictions. The cross sections are found to depend on Q^2 at low and high values of x, establishing the scaling violation behavior of the structure functions. .. 13

2.3 Parton distribution functions (PDFs) of proton for the valence quarks, sea quarks and gluons (labelled as x_f) in bins of x, as predicted by HERAPDF1.0 theory calculations given at $Q^2 = 10000$ GeV2. 14

2.4 The kinematic region in x and Q^2 covered by different fixed target experiments and by the HERA collider experiments. 15

2.5 Neutral current H1 and ZEUS combined cross sections using HERA-I and II data for both lepton beams are compared to HERAPDF1.0 predictions. At high Q^2 the cross sections are different for the two lepton beams, showing the presence of $xF_3(x, Q^2)$ structure function. 17

2.6 Total uncertainties on the parton distribution functions for different quarks and gluons (x_f) from HERAPDF1.0 and HERAPDF1.5 are compared. HERAPDF1.5 has smaller uncertainties owing to the more precise data being included. ... 18

2.7 The relative difference of different valence u-quark pdfs from different theory groups w.r.t CTEQ6.6. The yellow shaded band corresponds to the one sigma uncertainty from the CTEQ6.6 PDF. The relative difference between different pdfs increase as $x \to 1$. 19

2.8 The ratio of the analysis to the ZEUS published e^-p HERA I (blue) and the ZEUS preliminary HERA II e^-p (red) results to the CTEQ6D theory calculations. The error bars show the statistical and systematic uncertainties added in quadrature. For bins with zero measured events, a 68% probability limit is given. ... 20
List of Figures

3.1 The HERA accelerator, the two lines running parallel show the tunnels for electron beam and proton beam, also shown are location of four experiments. ... 22

3.2 Integrated luminosity of HERA for the two lepton beams in various run periods. ... 23

3.3 Various sublayers of the sub-detectors in the ZEUS detector. 24

3.4 ZEUS detector (longitudinal view) .. 26

3.5 Co-ordinate system in Zeus Detector 27

3.6 Nine superlayers in CTD shown with the arrangement of the sense wires. 28

3.7 Schematic diagram of ZEUS calorimeter (CAL) showing its division in three directions as Central, Forward and Rear calorimeters. The CAL is divided into 2 parts as electromagnetic and hadronic parts. 29

3.8 Structure of a module used to build ZEUS calorimeters, each consisting of towers made up of electromagnetic and hadronic calorimeter cells linked to the PMTs. .. 30

3.9 A calorimetric tower is build-up of electromagnetic cells (EMCs) and hadronic cells (HACs). .. 31

3.10 Three level Trigger system in ZEUS experiment. 33

3.11 Different steps involved in making ZEUS data or Monte Carlo(MC) simulations ready for a physics analysis. 34

4.1 An event display showing the topology of a NC DIS event, with an electron in BCAL and a jet in FCAL. (left) cross sectional view (right) longitudinal view ... 42

4.2 An event display showing the topology of a NC DIS event, with an electron in BCAL and no hadronic activity except that very close to the beam pipe in FCAL. (left) cross-sectional view (right) longitudinal view ... 43
4.3 An example of a QED Compton event which can fake a NC DIS event, with an electron in BCAL balanced in P_T with a photon. (left) cross-sectional view (right) longitudinal view ... 45

4.4 An example of a cosmic muon event. (left) cross-sectional view (right) longitudinal view ... 46

4.5 An example of a spark which simulates a hit in ECAL with no other activity in the detector... 47

4.6 Data and MC comparison of the EM electron’s probability (E_{emprob}), where MC is reweighted to the luminosity of the data. The dotted lines show the cut applied on E_{emprob} in the analysis. 48

4.7 Comparison of electron energy distribution in data and MC with MC being weighted to the luminosity of the data. The dotted lines show the cut applied on E_e in the analysis. 49

4.8 Comparison of E_{cone} distribution (energy in $\eta - \phi$ cone of radius 0.8, that is not assigned to the electron) in data and MC with MC being weighted to the luminosity of data .. 50

4.9 Comparison of Z-vertex distribution in data and MC with MC being weighted to the luminosity of the data. ... 52

4.10 Comparison of (a)total $E-P_z$ (b)y_{el} (c)$P_T/\sqrt{E_T}$ distributions in data and MC with MC being weighted to the luminosity of the data. The dotted lines show the cut applied on these quantities. 53

4.11 The number of events that remain after each cut (as labelled on the x-axis for every bin) is applied on the studied QEDC sample. 55

4.12 The number of events that remain after each cut (as labelled on the x-axis for every bin) is applied on the studied PHP sample. 55

5.1 Comparison of $E_{\text{cor}}/E_{\text{DA}}$ before corrections (a) in MC (blue) and (b) in data (red), and after corrections (black points in both plots) in bins of Distance to Module Edges(DME). The dotted lines show the analysis cut at DME of 1.4 cm on both sides. 58
List of Figures

5.2 Comparison of $E_{e_{\text{cor}}}/E_{e_{\text{DA}}}$ before corrections (a) in MC (blue) and (b) in data (red), and after corrections (black points in both plots) in bins of Distance to Cell Edges (DCE). The dotted lines show the analysis cut at DCE of 0.5 cm on both sides. 58

5.3 $E_{e_{\text{cor}}}/E_{e_{\text{DA}}}$ resolution compared in (a) MC (in blue) and (b) data (in red) in bins of Distance to Module Edges (DME). Electron energy needs to be smeared in MC to agree with data. 59

5.4 $E_{e_{\text{cor}}}/E_{e_{\text{DA}}}$ resolution compared in (a) MC (in blue) and (b) data (in red) in bins of Distance to Module Edges (DME). Electron energy needs to be smeared in MC to agree with data. 60

5.5 $P_{T}^{\text{jet}}/P_{T}^{\gamma}$ in (a) MC and (b) data for one jet events. The mean of the gaussian fit is used as the calibration factor for Jet Energy in FCAL. 61

5.6 $P_{T}^{\text{jet}}/P_{T}^{\gamma}$ in (a) MC and (b) data for one jet events. The mean of the gaussian fit is used as the calibration factor for Jet Energy in Super Crack. 62

5.7 $P_{T}^{\text{jet}}/P_{T}^{\gamma}$ in (a) MC and (b) data for one jet events. The mean of the gaussian fit is used as the calibration factor for Jet Energy in BCAL. 62

5.8 $P_{T}^{\text{jet}}/P_{T}^{\gamma}$ in (a) MC and (b) data for multijet events. The mean of the gaussian fit is used as the calibration factor for multijet events. 63

5.9 Track Matching Efficiency (TME) for MC (blue), data (red solid) and photoproduction subtracted data (red open circles) in the left plot. Right plot shows the ratio of data to MC (green) and photoproduction subtracted data to MC (open red points). Black curve shows the reweighting (given by Eq. 5.3 that is applied to MC as a correction). 64

5.10 Ratio of Track Matching Efficiency (TME) in data and MC (black solid points) in bins of energy of electron in final state. The red curve shows the weight given to MC as a correction and yellow band gives the 68% probability interval for the weight. 65
5.11 (a) Loose Track Veto efficiency (b) Semi-Loose Track Veto Efficiency for data (in Red) and MC (in blue) in bins of ratio of tracks from vertex to total tracks. ... 66

5.12 The upper plot shows the LTV efficiency for data (red) and MC (blue) in bins of γ_h for the events with $0 < vTrks/Trks < 3$. The lower plot shows the ratio of data and MC LTV efficiencies in bins of γ_h in green points which is fitted with a fourth order polynomial (black line), which is used as a reweighting factor on MC. .. 67

5.13 The upper plot shows the SLTV efficiency for data (red) and MC (blue) in bins of γ_h for the events with $3 < vTrks/Trks < 4.2$. The lower plot shows the ratio of data and MC SLTV efficiencies in bins of γ_h in green points which is fitted with a fourth order polynomial (black line), which is used as reweighting factor on MC. ... 68

5.14 Data MC comparison of the Z-vetex distribution (a) before reweighting and (b) after reweighting. The MC luminosity is reweighted to that of data. ... 68

5.15 Control plots showing the data MC comparison of (a) electron energy (b) electron polar angle. The MC luminosity is reweighted to that of the data luminosity. .. 69

5.16 Control plots showing the data MC comparison of (a) jet multiplicity (b) jet transverse momenta. The MC luminosity is reweighted to that of the data luminosity. .. 70

5.17 Control plots showing the data MC comparison of (a) jet polar angle (for non zero jet events) (b) γ_{had} calculated using the Double Angle approach (for zero jet events). The MC luminosity is reweighted to that of the data luminosity. .. 70
5.18 Control plots showing the comparison of Ariadne (filled yellow histogram) and MEPS MC (red dotted line) to the e^-p data (black solid points) for the electron properties (top row) and the jet properties (bottom row). The MC luminosity is reweighted to that of the data luminosity. 72

5.19 Control plots showing the comparison of Ariadne (filled yellow histogram) and MEPS MC (red dotted line) to the e^+p data (black solid points) for the electron properties (top row) and the jet properties (bottom row). The MC luminosity is reweighted to that of the data luminosity. ... 73

5.20 A 3D distribution comparing N_{jet} vs. θ_{jet} vs. E_T^{jet} in MEPS (blue), Ariadne (red) and data (black). The MC distributions are compared to that of the data to determine the best combination. 74

5.21 Comparison of χ^2 calculated for combination of MCs using 3D distributions N_{jet} vs. θ_{jet} vs. E_T^{jet} as shown in Fig. 5.20, for various values of α and β for e^-p (a) and e^+p (b). 75

5.22 Comparison of χ^2 taking $\beta = 1$ for e^-p (a) and e^+p (b). 76

5.23 Comparison of χ^2 taking $\beta = 1$ for both e^-p and e^+p (adding the individual χ^2 values). ... 76

5.24 Jet multiplicity for various MCs, i.e. combination MC (filled yellow), Ariadne and MEPS (blue and red dotted histograms respectively) compared to the polar angle of jet in data (black dots). The MC luminosity is reweighted to that of the data. .. 77

5.25 (a) Polar angle and (b) transverse momenta of jets for various MCs, i.e. combination MC (filled yellow), Ariadne and MEPS (blue and red dotted histograms respectively) compared to the distributions in data (black dots). The MC luminosity is reweighted to that of the data. 77
6.1 Comparison of spectra of x reconstructed by New-jet method in data (black solid circles) and MC (filled histogram). MC is weighted to the luminosity of data. ... 82

6.2 Comparison of spectra for logarithmic value of (a) Q^2 for non-zero jet events (b) Q^2 for zero jet events reconstructed using New-jet method, for data (points) and MC (filled histogram). The MC is weighted to the luminosity of data. ... 83

6.3 Relative ratio of the (a) scattered electron’s energy (b) scattered electron’s angle, to the corresponding MC true values. The gaussian fitted mean and sigma is used to study the bias and the resolution of the detector. ... 85

6.4 Bias and resolution for $1-E_e/E$ in bins of E as a result of a gaussian fit for each bin in E. ... 86

6.5 Bias and resolution for $1-\theta_e/\theta$ in bins of θ as a result of a gaussian fit for each bin in θ. ... 86

6.6 (a) Relative ratio of the scattered jet’s energy and (b) difference of scattered jet’s angle, to the corresponding MC true value for the events with only one reconstructed jet. .. 87

6.7 Bias and resolution for $1-E_{jet}/F$ in bins of F as a result of a gaussian fit for each bin in F for one jet events. ... 88

6.8 The parameters of the fit for $\gamma - \theta_{jet}$ for one jet events in bins of γ. ... 89

6.9 Relative ratio of the (a) scattered jet’s energy (b) scattered jet’s angle, to the corresponding MC true value for the multijet events. The gaussian fitted mean and sigma is used to study the bias and the resolution of the detector. ... 90

6.10 Bias and resolution for $1-E_b/F$ in bins of F as a result of a gaussian fit for each bin in F for multijet events. ... 90

6.11 Bias and resolution for $1 - \theta_b/\gamma$ in bins of γ as a result of a gaussian fit for each bin in γ for multijet events. ... 91
List of Figures

6.12 x and y obtained from kinematic fit compared to the MC true values.
(a) $1 - \frac{x_{KF}}{x_{MC}^{true}}$ (b) $1 - \frac{x_{KF}}{x_{MC}^{true}}$ 94

6.13 Spectrum of Initial State radiation, E_x obtained from kinematic fit (in black) compared to it’s true value in MC (in blue), shown in (a) linear scale and (b) log scale. 95

6.14 Correlation between the Initial State Radiation, E_x obtained from kinematic fit (KF) to the MC truth value ... 95

6.15 Bias and resolution in reconstructing x from kinematic fit compared to other methods in bins of x_{MC}^{true}. The resolution and bias are from mean and sigma of the gaussian function fitted to x_{KF}/x_{MC}^{true} in each bin... 96

6.16 Bias and resolution in reconstructing Q^2 from kinematic fit compared to other methods in bins of Q_{MC}^{true}. The resolution and bias are from mean and sigma of the gaussian function fitted to the ratio Q_{KF}/Q_{MC}^{true} 97

6.17 Bias and resolution in reconstructing x from kinematic fit compared to other methods in bins of x_{MC}^{true}. The resolution and bias are from mean and RMS of the value x_{KF}/x_{MC}^{true}. 98

6.18 Bias and resolution in reconstructing Q^2 from kinematic fit compared to other methods in bins of Q_{MC}^{true}. The resolution and bias are from mean and RMS of the value Q_{KF}^{2}/Q_{MC}^{true} 99

6.19 Comparison of spectra of (a) x and (b) Q^2 reconstructed by performing kinematic fit in data (black solid circles) and MC (filled histogram). The MC is weighted to the luminosity of data. 99

7.1 Definition of binning for calculating the double differential cross section in x-Q^2 kinematic plane. In the bins with shaded area, the double differential cross section is integrated and averaged in x. 102

7.2 Percentage purity of the sample in the cross section bins. 103

7.3 Percentage efficiency of the sample selection in the cross section bins. 103

7.4 Percentage acceptance in the cross section bins. 104
List of Figures

7.5 Summary of systematic errors in double differential cross section bins. The red solid line is the total systematic error and the black solid line is the statistical error in the bin. ... 108

7.6 Summary of systematic errors in integrated cross section bins. The red solid line is the total systematic error and the black solid line is the statistical error in the respective bin. 109

7.7 Summary of electron energy systematics: ratio of the nominal cross section to the varied cross section in cross section bins. 111

7.8 Summary of systematics due to hadronic final state simulation: ratio of the nominal cross section to the varied cross section in various cross section bins. .. 112

7.9 Relative difference in MC, between the polar angle of the scattered jet, measured vs. calculated from the output of kinematic fit, with Gaussian fit performed near the peak events. The width from the fit is used to calculate pull in the scattered polar angle of the jet. 114

7.10 The width for the distribution $(\xi^{KF} - \xi^{mea})/\xi^{mea}$ parametrized in terms of the respective measured quantities (in MC) for (a) scattered electron's energy (b) scattered jet energy and (c) polar angle of the scattered electron. The black line is the fitted curve which is used for the calculation of the pull in measured quantities after performing kinematic fit. .. 115

7.11 Comparison of pulls in the measured quantities after performing kinematic fit for (going from left to right) (top left) scattered electron energy (top right) scattered jet energy (bottom plot) polar angle of electron and (bottom right) polar jet angle, of data (points) and MC (histogram). The MC is weighted to the luminosity of data. 116
List of Figures

7.12 Comparison of pulls in the measured quantities after performing kinematic fit for (going from left to right) (top left) scattered electron energy (top right) scattered jet energy (bottom left) polar angle of electron and (bottom right) polar jet angle, of data (points) and MC (histogram), shown in logarithmic scale. The MC is weighted to the luminosity of data. ... 117

7.13 Comparison of pull in energy of the scattered electron, after performing kinematic fit, for data (points) and MC (histogram). The red (and yellow line) line is Gaussian fit to the pull distribution in data (and MC respectively) around the peak. The parameters of fit and from histogram are shown in the statistics box for MC and data. The MC is weighted to the luminosity of data. .. 118

7.14 Comparison of pull in energy of the scattered electron, after performing kinematic fit, for data (points) and MC (histogram). The energy of scattered electron is varied to -3% of it’s actual value in plot (a) and is varied to +3% of it’s actual value in plot (b), in MC. The red (and yellow line) line is gaussian fit to the pull distribution in data (and MC respectively) around the peak. The parameters of fit and from histogram are shown in the statistics box for MC and data. The MC is weighted to the luminosity of data. .. 119

7.15 The mean of the pulls in MC (blue horizontal lines) compared to the mean of the pull in data (red solid line) when the MC is varied by a% of it’s actual value for (a) electron energy (b) hadronic energy in the final state. ... 120

7.16 The mean of the pulls in MC (blue horizontal lines) compared to the mean of the pull in data (red solid line) when the MC is varied by a% of it’s actual value for (a) electron angle (b) hadronic angle in the final state. ... 120
7.17 Double differential NC DIS cross section for 142 pb\(^{-1}\) of ZEUS \(e^+p\) data collected at center of mass energy of 318 GeV are shown and are compared to HERAPDF1.5 theory predictions (in red) and CTEQ6D predictions (in black). The black triangles are the bins integrated and averaged in \(x\). Arrows are drawn at 68% probability limits for the bins where no event in reconstructed in data. ... 121

7.18 NC DIS double differential cross section for 142 pb\(^{-1}\) of ZEUS \(e^+p\) at center of mass energy of 318 GeV compared to HERAPDF1.5 predictions. The black triangles are the bins integrated and averaged in \(x\). The predictions from other theory group is also shown. The yellow curve represents the total uncertainty on HERAPDF1.5 predictions. . 123

7.19 Double differential NC DIS cross section for 142 pb\(^{-1}\) of ZEUS \(e^+p\) data (in blue) at center of mass energy of 318 GeV compared to 185 pb\(^{-1}\) of ZEUS \(e^-p\) (in red). Also shown are the HERAPDF1.5 theory predictions for both data sets. ... 124

7.20 \(F_2\) structure function calculated using 142 pb\(^{-1}\) of ZEUS \(e^+p\) data and 185 pb\(^{-1}\) of ZEUS \(e^-p\) data using the BAT framework for the double differential bins. The error bars correspond to the smallest marginalized 68% probability interval. The predictions from CTEQ6D theory are also shown. ... 125

7.21 \(xF_3\) structure function calculated using 142 pb\(^{-1}\) of ZEUS \(e^+p\) data and 185 pb\(^{-1}\) of ZEUS \(e^-p\) data using the BAT framework for the double differential bins. The error bars correspond to the smallest marginalized 68% probability interval. The predictions from CTEQ6D theory are also shown. ... 126

B.1 Summary of electron energy resolution systematics: ratio of the nominal cross section to the varied cross section in cross section bins. . . . 153

B.2 Summary of systematic error due to isolation cut: ratio of the nominal cross section to the varied cross section in cross section bins. 154
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.3</td>
<td>Summary of systematics due to FBCAL crack cut: ratio of the nominal cross section to the varied cross section in cross section bins.</td>
<td>154</td>
</tr>
<tr>
<td>B.4</td>
<td>Summary of systematics due to change in jet position in x direction, on the face of FCAL: ratio of the nominal cross section to the varied cross section in cross section bins.</td>
<td>155</td>
</tr>
<tr>
<td>B.5</td>
<td>Summary of systematics due to change in jet position in y direction, on the face of FCAL: ratio of the nominal cross section to the varied cross section in cross section bins.</td>
<td>155</td>
</tr>
<tr>
<td>B.6</td>
<td>Summary of systematic error due to track veto (TV) reweighting: ratio of the nominal cross section to the varied cross section in cross section bins.</td>
<td>156</td>
</tr>
<tr>
<td>B.7</td>
<td>Summary of systematic error due to track matching efficiency (TME) reweighting: ratio of the nominal cross section to the varied cross section in cross section bins.</td>
<td>156</td>
</tr>
<tr>
<td>B.8</td>
<td>Summary of systematic error due to distance to module edge (DME) cut on electron position in BCAL: ratio of the nominal cross section to the varied cross section in cross section bins.</td>
<td>157</td>
</tr>
<tr>
<td>B.9</td>
<td>Summary of systematics in the cross section bins, when EM finder is replaced by Sinistra finder to reconstruct electron. Error bars are statistical errors on data.</td>
<td>157</td>
</tr>
</tbody>
</table>