CONTENTS

<table>
<thead>
<tr>
<th>Chapters</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter I Introduction & objective of present thesis</td>
<td>01-09</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td></td>
</tr>
<tr>
<td>1.2 Objective of the thesis</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
<tr>
<td>Chapter II Dielectric theory and description of experimental methods</td>
<td>10-58</td>
</tr>
<tr>
<td>2.1 Dielectric Polarization</td>
<td></td>
</tr>
<tr>
<td>2.2 Area of dielectric study</td>
<td></td>
</tr>
<tr>
<td>2.2.1 Agricultural</td>
<td></td>
</tr>
<tr>
<td>2.3 The slotted line</td>
<td></td>
</tr>
<tr>
<td>2.3.1 Errors in slotted line technique</td>
<td></td>
</tr>
<tr>
<td>2.3.2 Probe tuning error</td>
<td></td>
</tr>
<tr>
<td>2.4 Review of experimental methods</td>
<td></td>
</tr>
<tr>
<td>2.4.1 Resonance method</td>
<td></td>
</tr>
<tr>
<td>2.4.2 Non-resonance method</td>
<td></td>
</tr>
<tr>
<td>2.4.3 Von-Hipple or shorted waveguide method</td>
<td></td>
</tr>
<tr>
<td>2.4.4 Two-point methods</td>
<td></td>
</tr>
<tr>
<td>(a) Loss-less dielectric</td>
<td></td>
</tr>
<tr>
<td>2.5 Basic equation for low loss dielectric materials</td>
<td></td>
</tr>
<tr>
<td>2.5.1 Basic equation for high loss materials</td>
<td></td>
</tr>
<tr>
<td>2.6 Method of experimental analysis for seeds</td>
<td></td>
</tr>
</tbody>
</table>
2.7 X-Band microwave bench setup

2.8 Special component used in the experiment.

2.8.1 Agilent 53147A/148A/149 microwave frequency counter/power meter/ DVM
 (a) Measuring frequency
 (b) Measuring power

2.8.2 Instrument used for pressing the seeds

References

Chapter III Frequency dependent dielectric properties of seeds

3.1 Introduction

3.2 Theory

3.3 Experimental procedure to determine the dielectric properties of seeds

3.4 Dielectric study of pulses seed samples

3.4.1 Dielectric Properties of pulses seed samples at 8-GHz frequency

3.4.2 Dielectric properties of pulses seed samples at 11-GHz

3.5 Dielectric study of oil seed samples

3.5.1 Dielectric properties of oil seed seed samples at 8-GHz frequency

3.5.2 Dielectric properties of oil seed samples at 11-GHz

3.6 Dielectric study of wheat seed samples

3.6.1 Dielectric properties of wheat seed samples at 8-GHz

3.6.2 Dielectric properties of wheat seed samples at 11-GHz

3.7 Dielectric study of jowar seed samples

3.7.1 Dielectric properties of jowar seed samples at 8-GHz

3.7.2 Dielectric properties of jowar seed samples at 11-GHz

References
Chapter IV Moisture dependent dielectric study of seeds 89-115

4.1 Introduction

4.2 Experimental procedure to determine dielectric properties of seeds

4.3 Moisture dependent dielectric properties of linseed sample

4.4 Moisture dependent dielectric properties of niger seed sample

4.5 Moisture dependent dielectric properties of sesame seed sample

4.6 Moisture dependent dielectric properties of pigeon pea seed sample

4.7 Moisture dependent dielectric properties of jowar (shalu) seed sample

References

Chapter V Density dependent dielectric study of seeds 116-128

5.1 Introduction

5.2 Theory

5.2.1 Direct measurement of sample mass and volume

5.2.2 Radiation methods

5.3 Experimental procedure to determine density of the seed samples

5.4 Experimental procedure to determine density dependent dielectric properties of seed samples

5.5 Density dependent dielectric properties of sesame

5.6 Density dependent dielectric properties of niger seed sample

References

Chapter VI Temperature dependent dielectric study of oil seeds 129-149

6.1 Introduction

6.2 Theory
6.3 Experimental procedure to determine temperature dependent dielectric properties of seed samples

6.4 Temperature dependent dielectric properties of oil seed samples at 8-GHz frequency

References

Chapter VII Dielectric study of mixed seeds

7.1 Introduction

7.2 Theory

7.3 Experimental procedure to determine the dielectric properties of mixed seed samples

7.4 Dielectric properties of safflower: sunflower

7.5 Dielectric properties of corn: wheat

7.6 Dielectric properties of fenugreek: wheat

7.7 Dielectric properties of pigeon pea: black gram

References

Chapter VIII Conclusion of the present work

Symbols

Appendix