CONTENTS

List of Tables i
List of Figures ii-iii
Abbreviations iv-vi
Abstract vii-xiii

Chapter 1: Review of Literature 1-34

1.1 Diabetes 1
 1.1.1 Prevalence of Diabetes Epidemic in World and in India 2
1.2 Insulin Signaling Pathway: An Overview 4
1.3 Liver as a Metabolic Hub 7
1.4 Insulin Resistance 11
1.5 TNFα 12
 1.5.1 TNFα Induced Insulin Signaling 14
 1.5.2 TNFα and Lipid Metabolism 17
1.6 MicroRNAs: Another Regulatory Domain for Diabetes 18
 1.6.1 MicroRNA Biogenesis and Mechanism of Action 18
 1.6.2 MicroRNAs and Glucose Metabolism 20
 1.6.3 MicroRNAs and Lipid Metabolism 24
 1.6.4 MicroRNAs and Diabetic Complications 27

Aims and Objectives 35

Chapter 2: Gene Expression Profiling of TNFα Action in HepG2 Cells 36-68

2.1 Introduction 36
2.2 Materials and Methods 37
 2.2.1 Cell Culture and Treatment 37
 2.2.2 RNA Isolation 38
 2.2.3 Microarray and Data Analysis 39
Chapter 3: Mechanism of Action of TNFα in Gluconeogenesis Mediated via Foxa2

3.1 Introduction 69
3.2 Materials and Methods 70
 3.2.1 Cell Culture 70
 3.2.2 Western Blotting 70
 3.2.3 Immunofluorescence Microscopy 71
 3.2.4 Chromatin Immunoprecipitation Assay 71
 3.2.5 RNA Isolation, RT-PCR and Quantitative Real-Time PCR 72
 3.2.6 Glucose Production Assay 73
 3.2.7 Densitometric Analysis 73
 3.2.8 Statistical Analysis 73
3.3 Results 74
 3.3.1 Incubation of HepG2 Cells with TNFα Attenuates Insulin-Stimulated Akt Phosphorylation and Nuclear Exclusion of Foxa2 74
 3.3.2 TNFα Pretreatment Increases Foxa2 Occupancy on the PEPCK Promoter 77
3.3.3 Effect of TNFα Pretreatment on PEPCK and G6Pase mRNA in HepG2 Cells
3.3.4 TNFα Attenuates Insulin-Induced Inhibition of Hepatic Glucose Output in HepG2 Cells

3.4 Discussion 81
3.5 Conclusion 85

Chapter 4: miRNA Profiling in Control and Diabetic Mice Liver 86-94
4.1 Introduction 86
4.2 Materials and Methods 87
4.2.1 Animal Models 87
4.2.2 RNA Isolation 87
4.2.3 miRNA Microarray 88
4.2.4 Real time PCR 88
4.2.5 Data Analysis 89
4.3 Results 89
4.3.1 Profiling differentially Expressed miRNA in Control vs. Diabetic Mice Liver 89
4.4 Discussion 92
4.5 Conclusion 94

Chapter 5: Mechanism of Action of miR-29a in Gluconeogenesis in a Diabetic Liver 95-112
5.1 Introduction 95
5.2 Materials and Methods 97
5.2.1 Animal Models 97
5.2.2 Quantitative RT-PCR for Estimation of miR-29a Levels 97
5.2.3 Cell Culture and Transfections 98
5.2.4 Northern Blot miR Analysis 98
5.2.5 Western Blotting Analyses 99
5.2.6 DNA Constructs and Mutagenesis 99
5.2.7 Luciferase Assays 100
5.2.8 Reverse Transcription and Quantitative PCR 100
5.2.9 Densitometric Analysis 101
5.2.10 Statistical Analysis 101
5.3 Results

5.3.1 miR-29a Levels are Elevated in the Livers of db/db Mice

5.3.2 miR-29a Inhibits Insulin Mediated Akt Activation without Affecting Total Akt Levels in HepG2 Cells

5.3.3 miR-29a Over-expression Leads to Inhibition of the Regulatory p85α Subunit of PI3K in HepG2 Cells

5.3.4 miR-29a Over-expression Narrows down Insulin Mediated Inhibition of PEPCK gene Expression

5.3.5 PI3Kp85α and PEPCK Protein Levels are Altered in the db/db Mice Liver

5.4 Discussion

5.5 Conclusion

References

Appendices

Publications