TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
</tr>
<tr>
<td>List of Figures</td>
</tr>
<tr>
<td>Abbreviations</td>
</tr>
<tr>
<td>Abstract</td>
</tr>
</tbody>
</table>

Chapter 1: Review of Literature 1-29

1.1. Introduction 1

1.1.1. History of Apoptosis 3

1.2. Caspases: The Central Players of Apoptosis 5

1.2.1. Classification of Caspases 5

1.2.2. Structural Organization of Caspases 7

1.2.3. Mechanism of Activation of Caspases 7

1.2.4. Caspase Targets 8

1.3. Bcl-2 Family Proteins 9

1.3.1. Members of Bcl-2 Family 10

1.4. Apoptotic Signalling Pathways 12

1.4.1. Extrinsic Pathway of Apoptosis 12

1.4.2. Intrinsic Pathway of Apoptosis 12

1.4.3. Cross Talk between Extrinsic and Intrinsic Pathways 14

1.4.4. ER Stress Induced Apoptosis 15

1.4.5. Master Regulator of Apoptosis 17

1.5. Apoptosis and Human Disease 18

1.6. Therapies based on Apoptosis 19

1.7. MicroRNAs 20

1.7.1. MiRNA Biogenesis 21

1.7.2. miRNAs Deciding the Fate of the Cell: Life or Death 22
Chapter 2: Materials and Methods 30-47

2.1. Reagents and Chemicals 30
 2.1.1. Kits 30
 2.1.2. Antibodies 31

2.2. Sequences Retrieval, Primer Designing and Cloning 31

2.3. Cell Culture and Transfection 33

2.4. Protein Preparation and Western Blot Analysis 34
 2.4.1. Quantitative and Statistical Analysis of Western Blot Data 35

2.5. Total RNA Isolation 36

2.6. Northern Blot Analysis 36

2.7. Reverse Transcription and Real-Time PCR 37

2.8. TaqMan microRNA Assay 39

2.9. Luciferase Assay 39

2.10. Measurement of Apoptosis 40
 2.10.1. Annexin-V Assay 40
 2.10.2. Cell Cycle Analysis 41

2.11. Multicaspase Assay 41

2.12. Caspase-3 and -9 Activity Measurements 42

2.13. Measurement of Mitochondrial Membrane Potential (Δψm) 42

2.14. Measurement of Reactive Oxygen Species (ROS) 43

2.15. Cytosolic and Mitochondrial Fractionation 43

2.16. Cytochrome c Release 44
2.17. Microarray Experiment using Illumina® BeadArray Chips 44
 2.17.1 Microarray Data Analysis 45
 2.17.2. Ingenuity Pathways Analysis 45
2.18. Preparation of Nuclear and Cytosolic Extract 46
2.19. Immunofluorescence Analysis 46
2.20. Co-immunoprecipitation Assay 47
2.21. Statistical Analysis 47

Chapter 3: Bax is the target of hsa-miR-128 48-60

3.1. Preface 48
3.2. Results 50
 3.2.1. In-silico Analysis Reveals Bax as a Target of hsa-miR-128 and miR-22 50
 3.2.2. Expression of hsa-miR-128, miR-22 and Bax Protein in Cell Lines 52
 3.2.3. Cloning of hsa-miR-128 and 3'UTR of Bax 52
 3.2.4. hsa-miR-128 Negatively Regulates Bax 55
 3.2.5. Bax is a Direct Target of hsa-miR-128 as indicated by Luciferase Assay 57
3.3. Discussion 59

Chapter 4: hsa-miR-128 induces apoptosis in HEK293T cells 61-72

4.1. Preface 61
4.2. Results 62
 4.2.1. Biological Effects of hsa-miR-128 in HEK293T Cells 62
 4.2.2. Cell Cycle Analysis after Overexpression of hsa-miR-128 in HEK293T Cells 63
 4.2.3. hsa-miR-128 Disrupts Mitochondrial Membrane Potential ($\Delta\Psi_m$), Generates ROS and Releases Cytochrome c in HEK293T Cells 64
4.2.4. Caspase Involvement in hsa-miR-128 Induced Apoptosis in HEK293T Cells 67

4.2.5. Modulation of Expressions of Apoptotic Pathway Proteins by hsa-miR-128 69

4.3. Discussion 69

Chapter 5: Gene expression profiling reveals SIRT1 as a target of hsa-miR-128 in HEK293T cells 73-80

5.1. Preface 73

5.2. Results 73

5.2.1. Cellular Growth, Gene Expression and Cell Death are the major Cellular and Molecular Functions of hsa-miR-128 as Revealed by IPA 73

5.2.2. Validation of Cell Cycle Network 76

5.2.3. SIRT1 is a Direct Target of hsa-miR-128 76

5.3. Discussion 79

5.4. Conclusion 80

Chapter 6: hsa-miR-128 exerts pro-apoptotic effects in a p53-dependent and -independent manner via PUMA-Bak axis 81-96

6.1. Preface 81

6.2. Results 81

6.2.1. hsa-miR-128 Positively Regulates p53 and its Transcriptional Targets 81

6.2.2. SIRT1 Inhibition by hsa-miR-128 Results in Acetylation and Nuclear Translocation of FOXO3A 84

6.2.3. hsa-miR-128 Induces Apoptosis in HEK293T Cells in a p53-Dependent and- Independent Manner 86

6.3. Discussion 91

6.4. Conclusion 96
Chapter 7: Gene expression profiling reveals hsa-miR-128 affects metabolism 97-101

7.1. Preface 97

7.2. Results 97

7.2.1. hsa-miR-128 Regulates Cholesterol and Fatty Acid Metabolism 97

7.2.2. Validation of Transcriptomics Data 97

7.2.3. Bioinformatic Analysis Revealed different Targets of hsa-miR-128 in Metabolism ABCA1 to be the Target of hsa-miR-128 100

7.3. Discussion 101

Conclusions 102-103

Bibliography 104-121

Appendices 122-134

Appendix 1: Stock solution preparation 122

Appendix 2: The list of 182 differentially expressed genes after overexpression of hsa-miR-128 in HEK293T cells 126

Appendix 3: Summary of all networks found to be significant by IPA analysis after overexpression of hsa-miR-128 in HEK293T cells 132

Appendix 4: Biological effects of hsa-miR-128 in NCI-H460 and MCF-7 cells 133

Publications 135