CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Time-dependent Quantum Mechanics of Anharmonic Oscillators and Quantum Dynamics of Nonlinearly Coupled Oscillators and Helium Atom Under Strong External Fields</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>One-Dimensional Anharmonic, Double- and Multiple-well Oscillators</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Two-Dimensional Nonlinearly Coupled Oscillators</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>Quantum Chaos</td>
<td>5</td>
</tr>
<tr>
<td>1.5</td>
<td>Nonlinear Oscillators Under Intense Laser Fields: A Study of Quantum Chaos</td>
<td>8</td>
</tr>
<tr>
<td>1.6</td>
<td>Time-Dependent Study of Helium Atom Under Magnetic Fields</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>Time-dependent Quantum Mechanical Calculation of Ground and Excited States of anharmonic and Double-well Oscillators</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>17</td>
</tr>
<tr>
<td>2.2</td>
<td>Applications of Nonlinear Oscillators</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>Quantum Mechanical studies of Nonlinear Oscillators</td>
<td>21</td>
</tr>
<tr>
<td>2.4</td>
<td>Methodology</td>
<td>25</td>
</tr>
<tr>
<td>2.5</td>
<td>Numerical Method</td>
<td>28</td>
</tr>
<tr>
<td>2.6</td>
<td>Results and Discussion</td>
<td>31</td>
</tr>
</tbody>
</table>
2.6.1 Pseudodegeneracy 36
2.6.2 Effect of asymmetry parameter on pseudodegeneracy 39
2.6.3 Probability density plots 40
2.7 Conclusion 48
References 49

Chapter 3 One-dimensional Multiple-well Oscillators: A Time-dependent Quantum Mechanical Approach

3.1 Introduction 53
3.2 Methodology 55
3.3 Results and Discussion 56
References 69

Chapter 4 Does The Classically Chaotic Henon-Heiles Oscillator Exhibit Quantum Chaos Under Intense Laser Fields?

4.1 Introduction 70
4.2 Methodology 72
4.3 Laser and Grid Specifications 77
4.4 Slightly Different Initial Inputs 78
4.5 Results and Discussion 78
4.5.1 Autocorrelation function 80
4.5.2 Power spectrum 80
4.5.3 Nearest neighbour spacing distribution 81
4.5.4 Distance function 82
4.5.5 Overlap integral 87
4.5.6 Quantum “phase space” volume 87
4.5.7 Quantum “phase space” trajectory 88
4.5.8 Potential energy surface and probability density plots 89
4.5.9 High harmonic generation 97
4.6 Conclusion 99
References 101

Chapter 5 Quantum Dynamics of an Electron Moving in Coupled Quartic and Coupled Double-well Oscillators Under Intense Laser Fields

5.1 Introduction 103
5.2 Methodology 105
5.3 Laser and Grid Specifications 107
5.4 Slightly Different Initial Inputs 107
5.5 Results and Discussion 108
5.5.1 Autocorrelation function 108
5.5.2 Power spectra 109
5.5.3 Distance function and “phase space” volume 116
5.5.4 Quantum “phase space” trajectories 117
5.5.5 Overlap integral 123
5.5.6 Potential energy surfaces and probability density plots 124
5.5.7 High harmonic generation 125
5.6 Conclusion 135
References 136
Chapter 6 Quantum Dynamics of Helium Atom Under Strong Magnetic Fields

6.1 Introduction 137
6.2 Motion in Magnetic Field 139
6.3 Numerical Method 141
6.4 Results and Discussion 147
References 154