Chapter 1 Introduction and review of literature on chitinase

1.1 Introduction

1.1.1 Chitin

1.1.1.1 Historical account
1.1.1.2 Occurrence
1.1.1.3 Structure and function of chitin
1.1.1.4 Physical and chemical properties of chitin
1.1.1.5 Chitosan
1.1.1.6 Industrial and biomedical applications of chitin, chitosan and chitooligosaccharides

1.1.2 Chitinase

1.1.2.1 Sources of chitinases

1.1.2.1.1 Plant chitinases
1.1.2.1.2 Insect chitinases
1.1.2.1.3 Microbial chitinase

1.1.2.2 Classification of chitinase
1.1.2.3 Functions of chitinases
1.1.2.4 Binding mode of chitinase
1.1.2.5 Chitinase inhibitors
1.1.2.6 Molecular genetics for enhanced production of chitinase

1.1.2.7 Applications of chitinases

1.1.2.7.1 Cytochemical localization of chitin/chitosan using chitinase/chitosanase gold complexes
1.1.2.7.2 Production of single-cell protein
1.1.2.7.3 Production of protoplasts
1.1.2.7.4 Production of chito-oligosaccharides, glucosamine, and GlcNAc
1.1.2.7.5 Detection of fungal biomass
1.1.2.7.6 Control of mosquito
1.1.2.7.7 Fungal and insect morphogenesis
1.1.2.7.8 Control of phytopathogenic fungi
1.1.2.7.9 Biomedical applications
1.1.2.7.10 In the recycling of chitinous bio-waste

1.1.3 Scope of the work
Chapter 2 .. 24-42

Isolation, identification and screening of chitinase producing isolates

2.1 Introduction .. 25

2.2 Material and Methods ... 26

2.2.1 Chemicals

2.2.2 Isolation and screening of chitinase producing isolates

2.2.2.1 Isolation of fungi from plant detritus and soil

2.2.2.2 Isolation from frog excrement

2.2.2.3 Agar overlay technique

2.2.2.4 Screening for extracellular chitinase production

2.2.2.5 Chitin flake colonization

2.2.2.6 Plate assay for extracellular chitinase detection

2.2.2.7 Agar-well diffusion test

2.3 Identification of organisms ... 30

2.3.1 Identification based on morphotaxonomic characters

2.3.2 Molecular identification by sequencing of ITS1, 2 & 5.8S regions

2.3.2.1 Genomic DNA extraction

2.3.2.2 PCR (Polymerase Chain Reaction) amplification and sequencing

2.3.2.3 Sequencing and data analysis

2.4 Quantitative estimation of chitinase activity ... 33

2.4.1 Preparation of substrate (Acid swollen chitin)

2.4.2 Preliminary quantitative estimations

2.5 Results and discussion .. 34

2.5.1 Isolation from soil/plant litter

2.5.2 Isolation from frog excrement

2.5.3 Screening for extracellular chitinase production

2.5.4 Identification of the fungal isolates

2.5.5 Molecular identification of fungal isolate

2.6 Conclusion .. 41

Chapter 3 .. 43-61

Production optimization for chitinase from Basidiobolus ranarum

3.1 Introduction .. 44

3.2 Materials and methods ... 45

3.2.1 Chemicals, organism and growth conditions

3.2.1.1 Chemicals

3.2.1.2 Preparation of inoculum

3.2.1.3 Chitinase assay

3.2.2 Optimization using one factor at a time approach

3.2.2.1 Effect of temperature on chitinase production by B. ranarum

3.2.2.2 Effect of pH on chitinase production by B. ranarum

3.2.2.3 Effect of inoculum density on chitinase production from B. ranarum

3.2.2.4 Effect of sugars on chitinase production

3.2.3 Statistical approach for optimization of nutritional parameters

3.2.3.1 Effect of nutritional and environmental parameters on chitinase production

3.2.3.2 Experimental statistical design
3.3 Results and discussion .. 49
 3.3.1 Optimization of cultivation conditions with respect to chitinase production by *B. ranarum* using one factor at a time approach
 3.3.1.1 Effect of temperature on chitinase production by *B. ranarum*
 3.3.1.2 Effect of pH on chitinase production by *B. ranarum*
 3.3.1.3 Effect of inoculum density on chitinase production from *B. ranarum*
 3.3.1.4 Effect of sugars on chitinase production
 3.3.2 Experimental statistical design
3.4 Conclusion .. 59

Chapter 4 ...61-71

Application of *Basidiobolus ranarum* and its chitinase in biocontrol of plant pathogenic fungi

4.1 Introduction ... 62
 4.1.1 Biological control of plant pathogenic fungi
 4.1.2 Chitin as a target molecule
 4.1.3 Value added products by utilization of fungal mycelia
4.2 Materials and methods .. 65
 4.2.1 Biotechnological potential of *B. ranarum*
 4.2.1.1 *Basidiobolus* as an antagonistic agent against plant pathogenic fungi
 4.2.1.2 Utilization of fungal mycelial preparations by *B. ranarum*
 4.2.2 Preparation of crude enzyme and ammonium sulphate precipitate
 4.2.2.1 *In vitro* mycelial degradation by extracellular chitinase of *B. ranarum*
 4.2.2.2 Agar-well diffusion test against plant pathogenic fungi
 4.2.3 Enzymes secreted by *B. ranarum* along with chitinase
4.3 Results and discussion .. 67
 4.3.1 Biotechnological potential of *B. ranarum* and its chitinase
 4.3.1.1 *B. ranarum* as an antagonistic agent against phytopathogenic fungi
 4.3.1.2 Utilization of fungal mycelia as a carbon source and production of NAG
 4.3.1.3 *In vitro* mycelial degradation by extracellular chitinase of *B. ranarum*
 4.3.1.4 Agar-well diffusion test against plant pathogenic fungi
 4.3.2 Enzymes secreted by *B. ranarum* along with chitinase
4.4 Conclusion .. 70

Chapter 5 ...72-85

Purification and characterization of chitinase from *Basidiobolus ranarum*

5.1 Introduction ... 73
5.2 Materials and methods .. 74
 5.2.1 Organism and growth conditions
 5.2.2 Purification of chitinase
 5.2.2.1 Ammonium sulphate precipitation
 5.2.2.2 Gel filtration
 5.2.3 Characterization of chitinase
5.2.3.1 Optimum pH for enzyme activity and stability
5.2.3.2 Optimum temperature for enzyme activity and stability
5.2.3.3 Effect of metal ions on chitinase activity and inhibitors
5.2.3.4 Effect of inhibitors on chitinase activity
5.2.3.5 Molecular weight determination of chitinase
5.2.3.6 Determination of substrate specificity and enzyme kinetics

5.3 Results and discussion ... 76

5.3.1 Purification of chitinase
 5.3.1.1 Precipitation of enzyme
 5.3.1.2 Gel filtration chromatography

5.3.2 Characterization of chitinase
 5.3.2.1 pH activity and stability
 5.3.2.2 Temperature activity and stability
 5.3.2.3 Effect of metal ions
 5.3.2.4 Effect of inhibitors
 5.3.2.5 Molecular weight determination
 5.3.2.6 Substrate specificity and enzyme kinetics

5.4 Conclusion ... 85

Conclusion ... 87-88
Bibliography ... 89-114
Appendix ... 115-117
Publications .. 118