CONTENTS

1. **INTRODUCTION** 1

1.1. Objectives of the present study 6

2. **REVIEW OF LITERATURE** 8

2.1 Polyhydroxyalkanoates (PHAs) 8
2.2 PHAs in nature 8
2.3. PHA and stress 10
2.4. Utilization of PHAs by bacteria 12
2.5. Properties of PHA 13
2.5.1. Chemical properties 13
2.5.2. Physical properties 15
2.6. Biodegradability of PHAs 16
2.7. PHA biosynthesis in eucaryotic cells 17
2.8. Microbial synthesis of PHA 19
2.9. Importance of microbial synthesis of PHA 23
2.10. Biosynthesis of PHAs 24
2.11. Biosynthetic pathways of PHAs 26
2.12. Genes involved in PHA biosynthesis 27
2.13. Organisation of PHA biosynthesis genes 27
2.14. PHA production by fermentation 29
2.15. Detection, isolation and analysis of PHAs 32
2.15.1. Screening for PHAs 38
2.15.2. Isolation of PHAs 39
2.15.2.1. Pretreatment 40
2.15.2.2. Extraction Methods 40
2.15.3. Analysis of PHAs 43
2.16. Application of PHAs 44
2.16.1. Industry 44
2.16.2. As packaging material 44
2.16.3. Chiral intermediates for the synthesis of valuable compounds 45
2.16.4. Other industrial applications 45
2.16.5. In nutrition 46
2.16.6. Agricultural applications 46
2.16.7. As bio-indicator 47
2.16.8. Marine application 47
2.16.9. Medicine 47
2.16.9.1. As tissue engineering material 48
2.16.9.2. As drug delivery material 48
2.16.9.4. Other medical and pharmaceutical applications 49
2.17. Industrial production of PHAs 50
2.18. National status of PHA research 51
3. MATERIALS AND METHODS 53

3.1 Screening and identification of vibrios 53
3.1.1 Sources of vibrios 53
3.1.2 Collection of samples 54
3.1.3 Preparation of serial dilutions of the sample 54
3.1.4 Medium used for isolation and purification of *Vibrio* sp. 55
3.1.5 Identification of vibrios upto genus 55
3.1.5.1 Morphological and biochemical characteristics 55
3.1.5.2 Gram staining, oxidase and MOF test 55
3.1.6 Stocking 56
3.1.6.1 Paraffin overlay method 57
3.1.6.2 Glycerol stocking 57
3.1.6.3 Temporary stocking 57
3.2 Preliminary and secondary screening 57
3.2.1 Preliminary screening using plate assay 57
3.2.1.1 Medium 57
3.2.1.2 Screening for PHA accumulating vibrios 58
3.2.2 Secondary screening using spectrophotometric analysis 58
3.2.2.1 PHA production medium 58
3.2.2.2 Seed medium 59
3.2.2.3 Inoculum preparation 59
3.2.2.4 PHA extraction 59
3.2.2.5 Analytical methods 60
3.2.2.5.1 Spectrophotometric determination of PHA accumulation 60
3.2.2.5.2 Cell Dry Weight (CDW) determination 61
3.2.2.5.3 PHA content determination 61
3.3 Phenotypic characterization 61
3.3.1 Biochemical characterization 61
3.3.1.1 Hi-Vibrio identification system 61
3.3.1.2 Preparation of the inoculum and inoculation of the strip 62
3.3.1.3 Reading of the strips 62
3.3.2 Screening for extracellular enzyme production 62
3.3.2.1 Extracellular amylase production 63
3.3.2.2 Extracellular caseinase production 63
3.3.2.3 Extracellular lipase production 63
3.3.2.4 Extracellular cellulase production 63
3.3.2.5 Extracellular pectinase production 63
3.3.2.6 Extracellular alginate production 64
3.3.2.7 Extracellular xylanase production 64
3.3.2.8 Extracellular DNase production 64
3.3.2.9 Extracellular gelatinase production 64
3.3.2.10 Extracellular phosphatase production 64
3.3.3 Antibiotic susceptibility test 65
3.3.3.1 MAR (Multiple Antibiotic Resistance) indexing 65
3.3.4 Hemolytic activity of vibrios 66
3.3.5 Phase Contrast Microscopy 66
3.3.6 Sudan Black staining 66
3.3.7 Bacterial growth curve of selected organism 67
3.4 16S rDNA sequence analysis for identification of PHA producing Vibrio sp. 67
3.4.1 Template preparation for PCR 67
3.4.2 Agarose gel electrophoresis 68
3.4.3 16S rDNA sequence analysis 68
3.4.3.1 Polymerase Chain Reaction (PCR) 69
3.4.3.2 In-silico analysis of the sequence 69
3.4.3.2.1 DNA sequencing and analysis 69
3.4.3.2.2 Multiple sequence alignment and phylogenetic tree construction 70
3.5 Screening for virulence genes in PHA producing Vibrio sp. 70
3.5.1 PCR for toxR 70
3.5.2 PCR for zot 71
3.5.3 PCR for ctxA 72
3.6 Molecular characterization of PHA synthase gene 72
3.6.1 Cultivation of bacterial strains. 72
3.6.2 Isolation of DNA 72
3.6.3 Nucleic acid quantification and agarose gel electrophoresis 72
3.6.4 Detection of class I PHA synthase gene 73
3.6.4.1 PCR for class I PHA synthase gene 74
3.6.4.2 Semi-nested PCR for class I PHA synthase gene 74
3.6.5 Detection of class II PHA synthase gene 75
3.6.5.1 PCR for class II PHA synthase gene 75
3.6.6 Agarose gel electrophoresis of PCR products 76
3.6.7 In-silico analysis of the sequence 76
3.7 PHA production by Vibrio sp. BTKB33: optimisation of bioprocess variables by “one-factor-at-a-time” method 77
3.7.1 Incubation time 77
3.7.2 Initial pH of the medium 78
3.7.3 Sodium chloride concentration 78
3.7.4 Agitation 78
3.7.5 Incubation temperature 79
3.7.6 Different media 79
3.7.7 Age of inoculum 80
3.7.8 Effect of inorganic Nitrogen sources 80
3.7.9 Effect of organic Nitrogen sources 80
3.7.10 Effect of inorganic salts 81
3.7.11 Effect of different inoculum concentrations 81
3.7.12 Effect of carbon sources 82
3.8 PHA production by Vibrio sp. BTKB33 under submerged fermentation: optimisation of bioprocess variables by statistical approach 82
3.8.1 Plackett-Burman design 83
3.8.1.2 Validation of PB Design 84
3.8.2 Optimization of bioprocess variables using RSM 85
3.8.2.2 Validation of the Box-Behnken design model 88
3.8.3 Time course study under optimal conditions 88
3.9 Extraction, purification and characterization 88
3.9.1 Culture conditions and PHA extraction 88
3.9.2 PHA purification 89
3.9.3 Fourier-Transform Infra red Spectroscopy 89
3.9.4 Nuclear Magnetic Resonance analysis 90
3.9.5 Differential Scanning Calorimetry analysis 90
3.9.6 Thermogravimetric analysis 90

4 RESULTS 91
4.1 Screening and identification of vibrios 91
4.2 Preliminary screening 91
4.3 Phenotypic characterization 92
4.3.1 Biochemical tests 92
4.3.2 Extracellular enzyme profile 97
4.3.3 Antibiotic susceptibility test 99
4.3.3.1 Multiple antibiotic resistance indexing 100
4.4 Secondary screening 101
4.5 16S rDNA sequence analysis 101
4.5.1 Phylogenetic tree construction 104
4.5.1.1 Intraspecies variation 106
4.5.1.1.1 Intra species variation among PHA accumulating strains of V. alginolyticus 106
4.5.1.1.2 Intra species variation among PHA accumulating strains of V. parahemolyticus 107
4.5.1.1.3 Intra species variation among PHA accumulating strains of V. azureus 107
4.6 Molecular characterization of PHA synthase gene 108
4.6.1 Semi-nested PCR detection of Class I PHA synthase gene 108
4.6.2 PCR detection of Class II PHA synthase gene 109
4.7 The phenotypic and genotypic characteristics of production strain BTKB33 110
4.7.1 Phenotypic characteristics of Vibrio sp. strain BTKB33 111
4.7.2 Genotypic characteristics of Vibrio sp. strain BTKB33 112
4.7.3 Screening for virulence genes in Vibrio sp. strain BTKB33 113
4.7.4 Growth curve of Vibrio sp. strain BTKB33 114
4.7.5 Phase contrast microscopy 114
4.7.6 Sudan Black staining 115
4.7.7 In-silico analysis of the partial sequence of phaC gene 116
4.8 Submerged fermentation (SmF) for the production of polyhydroxyalkanoates by Vibrio sp. strain BTKB33 120
4.8.1 Optimization of bioprocess variables for PHA production by Vibrio sp. strain BTKB33 by “one-factor-at-a-time” method. 120
4.8.1.1 Effect of incubation time 120
4.8.1.2 Effect of initial pH 121
4.8.1.3 Effect of sodium chloride concentration 122
4.8.1.4 Effect of agitation 123
4.8.1.5 Effect of temperature 124
4.8.1.6 Optimization of medium 125
4.8.1.7 Effect of age of inoculum 126
4.8.1.8 Effect of inorganic nitrogen source 127
4.8.1.9 Effect of organic nitrogen sources 128
4.8.1.10 Effect of inorganic salts 129
4.8.1.11 Effect of inoculum concentration 130
4.8.1.12 Effect of various carbon sources 131
4.8.2 Optimization of bioprocess variables for PHA production by Vibrio sp. strain BTKB33 by “statistical approach” 133
4.8.2.1 Plackett-Burman Design (P-B Design) 133
4.8.2.2 Response surface methodology (RSM) by Box-Behnken design 137
4.8.2.2.1 Analysis of factors influencing PHA production 141
4.8.2.2.1.1 Interaction between incubation period and temperature on PHA production 141
4.8.2.2.1.2 Interaction between NaCl concentration and temperature on PHA production 142
4.8.2.2.1.3 Interaction between NaCl concentration and incubation period on PHA production 143
4.8.2.2.2 Analysis of factors influencing PHA content 143
4.8.2.2.2.1 Interaction between NaCl concentration and temperature on PHA content 144
4.8.2.2.2.2 Interaction between of incubation period and temperature on PHA content 144
4.8.2.2.2.3 Interaction between NaCl concentration and incubation period on PHA content 145
4.8.2.3 Validation of response surface model 146
4.8.3 Time course study under optimal conditions 149
4.9 Characterization of polyhydroxyalkanoates 151
4.9.1 Fourier transform infrared spectroscopy 151
4.9.2 \(^{13}\)C NMR analysis 152
4.9.3 Differential scanning calorimetry 154
4.9.4 Thermogravimetric analysis 155

5. DISCUSSION 156
6. SUMMARY 179
7. CONCLUSION 185
8. REFERENCES 187
9. APPENDIX 224
10. LIST OF PUBLICATIONS 240