LIST OF TABLES AND FIGURES

2 REVIEW OF LITERATURE

Table 2.1 Properties of PHAs and polypropylene.
Table 2.2 Some natural bacterial PHAs accumulators.
Table 2.3 Examples of bacterial fermentation studies for production of PHAs using renewable resources.
Fig. 2.1 Chemical structure of PHAs.
Fig. 2.2 Synthesis of PHAs.
Fig. 2.3 Biosynthesis of PHA from Cupriavidus necator.
Fig. 2.4 Molecular organization of genes encoding PHA synthases of type I.
Fig. 2.5 Molecular organization of genes encoding PHA synthases of type II.
Fig. 2.6 Molecular organization of genes encoding PHA synthases of type III.

3 MATERIALS AND METHODS

Table 3.1 Details of sampling stations, types of sampling sites and mode of collection.
Table 3.2 The minima and maxima of the parameters selected for optimization of PHA production in Vibrio sp. BTKB33 by Plackett-Burman design.
Table 3.3 Box-Behnken design for 3 variables at 3 levels and 17 runs for the optimization of PHA production and PHA content in Vibrio sp. BTKB33 under submerged fermentation.
Fig. 3.1 Various sampling regions along south west and east coast of India.
Fig. 3.2 Positions of primers on the Class I PHA synthase gene of R.eutropha.
Fig. 3.3 The schematic representation of the Pseudomonas resinovorans PHA locus.
4 RESULTS

Table 4.1 The results of biochemical tests of the PHA producing Vibrio sp. from marine sediments.

Table 4.4 Secondary screening of PHA accumulating Vibrio sp.

Table 4.5 Identities of PHAs accumulating strains of Vibrio sp. derived by 16S rDNA sequence analysis

Table 4.6 Phenotypic characteristics of Vibrio sp. strain BTKB33.

Table 4.7 The 231 bp sequence obtained for Class I PHA synthase gene of Vibrio sp. BTKB33.

Table 4.8 The deduced aminoacid sequence of Class I PHA synthase gene of Vibrio sp. BTKB33.

Table 4.9 The lineage report for the partial PHA synthase gene of Vibrio sp. BTKB33.

Table 4.10 The matrix of the Plackett-Burman design experiments and the observed experimental data for PHA production in Vibrio sp. BTKB33.

Table 4.11 ANOVA for the experiments with Plackett-Burman design for the PHA production by Vibrio sp. BTKB33.

Table 4.12 Optimization of medium composition and physical parameters for the PHA production and PHA content per CDW by Vibrio sp. BTKB33 using Box-Behnken design experiment.

Table 4.13 ANOVA for the response surface experiments conducted using Box Behnken design for PHA production by Vibrio sp. BTKB33.

Table 4.14 ANOVA for the response surface experiments conducted using Box-Behnken design for PHA content by Vibrio sp. BTKB33.

Table 4.15 Predicted and experimental values of PHA production and PHA content obtained for validation of the RSM model.

Table 4.16 Optimized condition selected for time course study for maximal PHA production in Vibrio sp. BTKB33.
Table 4.17 The results of optimization studies for PHA production and PHA content in *Vibrio* sp. BTKB33 under SmF conditions.

Table 4.18 Chemical shift and peak number of extracted purified PHA from *Vibrio* sp. BTKB33.

Fig. 4.1 Nile blue A staining method for the detection of PHAs accumulating strains of *Vibrio* sp. isolated from marine sediment samples.

Fig. 4.2 The exoenzyme activity of strains of PHA accumulating *Vibrio* sp..

Fig. 4.3 Extracellular enzyme profile of PHA accumulating *Vibrio* sp..

Fig. 4.4 Percentage of PHA producing *Vibrio* sp. with multiple hydrolytic enzyme activity.

Fig. 4.5 The antibiotic susceptibility profile of PHA accumulating *Vibrio* sp. (N=80).

Fig. 4.6 The MAR Index pattern of PHA accumulated *Vibrio* sp..

Fig. 4.7 Phylogenetic relationship based on partial 16S rDNA sequences of selected PHA accumulating strains of *Vibrio* sp..

Fig. 4.8 Intra species variation among PHA accumulating strains of *Vibrio alginolyticus* isolates (N=7).

Fig. 4.9 Intra species variation among PHA accumulating strains of *Vibrio parahemolyticus* isolates (N=5).

Fig. 4.10 Intra species variation among PHA accumulating strains of *Vibrio azureus* isolates (N=7).

Fig. 4.11 Agarose electrophoresis for seminested PCR product of Class I PHA synthase genes.

Fig. 4.12 Agarose electrophoresis for PCR product of Class II PHA synthase genes.

Fig. 4.13 Phylogenetic relationship based on partial 16SrDNA sequences of *Vibrio* sp. strain BTKB33 with related taxa.

Fig. 4.14 Screening for virulence gene in *Vibrio* sp. strain BTKB33 using PCR.

Fig. 4.15 Growth curve of production organism- *Vibrio* sp. strain BTKB33.
Fig. 4.16 Phase contrast microscopic image of the brightly refractile cytoplasmic inclusions in *Vibrio* sp. strain BTKB33.

Fig. 4.17 Micrograph of Sudan Black stained cells of *Vibrio* sp. strain BTKB33 under bright field compound microscope.

Fig. 4.18 Amino acid sequence alignment of partial poly(R)-hydroxyalkanoic acid synthase (*phaC*), class I from *Vibrio* sp. strain BTKB33.

Fig. 4.19 Phylogenetic tree showing diversity of aminoacid sequences of *phaC* gene of *Vibrio* sp. BTKB33 with other bacteria.

Fig. 4.20 Optimization of incubation period.

Fig. 4.21 Optimization of initial pH.

Fig. 4.22 Optimization of NaCl concentration.

Fig. 4.23 Optimization of agitation speed.

Fig. 4.24 Optimization of incubation temperature.

Fig. 4.25 Optimization of different media.

Fig. 4.26 Optimization of age of inoculum.

Fig. 4.27 Optimization of inorganic nitrogen source.

Fig. 4.28 Optimization of organic nitrogen source.

Fig. 4.29 Optimization of various inorganic salts.

Fig. 4.30 Optimization of inoculum concentration.

Fig. 4.31 Optimization of various carbon sources.

Fig 4.32 Pareto chart showing the effect of individual factors on PHA production by *Vibrio* sp. BTKB33.

Fig. 4.33 Validation of Plackett-Burman Design.

Fig. 4.34 Effect of incubation period and temperature on PHA production.

Fig. 4.35 Effect of temperature and NaCl concentration on PHA production.

Fig. 4.36 Effect of NaCl concentration and incubation period on PHA production.

Fig. 4.37 Effect of temperature and NaCl concentration on PHA content.

Fig. 4.38 Effect of incubation period and temperature on PHA content.
Fig. 4.39 Effect of NaCl concentration and incubation period on PHA content.
Fig. 4.40 Predicted and experimental values of PHA production by *Vibrio* sp. BTKB33 obtained for validation of the RSM model.
Fig. 4.41 Predicted and experimental values of PHA content by *Vibrio* sp. BTKB33 obtained for validation of the RSM model.
Fig. 4.42 Time course study for PHA production and PHA content by *Vibrio* sp. BTKB33 under optimized conditions.
Fig. 4.43 FTIR spectrum of PHA produced by *Vibrio* sp. BTKB33.
Fig. 4.45 13C NMR spectrum of purified PHA extracted from *Vibrio* sp. BTKB33.
Fig. 4.46 The thermogram obtained by DSC of standard PHB.
Fig 4.47 The thermogram obtained by DSC of extracted purified PHAs of *Vibrio* sp. BTKB33.
Fig 4.48 The thermogravimetric analysis of extracted purified PHA from *Vibrio* sp. strain BTKB33.

6 SUMMARY

Table 6.1 Optimized bioprocess variables for PHA production by *Vibrio* sp. strain BTKB33 employing “one-factor-at-a-time” method.

APPENDIX II

Table 4.2 The exoenzyme profile of PHAs accumulating *Vibrio* sp. from marine benthic sediments.
Table 4.3 Antibiogram of PHAs accumulating *Vibrio* sp. from marine benthic sediments.