Chapter - V
Summary & Conclusions...
CHAPTER V

SUMMARY AND CONCLUSIONS

Introduction

In the preceding chapters, introduction of the problem, development of the tools, method of the study & interpretation of the data were discussed. The present chapter is focused around a brief description of the purpose, design and procedure of the study along with the conclusions and suggestions for the further research.

5.1 Parental Involvement

Parental Involvement implies how the parents involve themselves in developing the overall personality of their children. Nurturing of children is directly related to parents. All parents have certain expectations, likes and dislikes and preferences regarding how should children be handled, brought up and educated. These may be snapped according to parent’s concept of an ideal child. Parental Involvement in children’s education has been associated with many positive outcomes like good achievement scores and better performance in extra curricular activities (Christenson, Rounds and Gorney, 1992). In general, productive collaboration between school and families has been associated with higher student achievement ratio (Keith, 1993), lower dropout rates (National Center for Educational Statistics 1992), a decline in behavior problems and academic initiative and persistence (Comer, 1994).

Parental Involvement in the education of their children is multifaceted. Researchers often equate Parent Involvement with active participation in school activities or with keen interest in child’s academic progress. Teachers think of Parent Involvement as sending children to school on time, attending parent-teacher meetings and helping with homework. Most parents and educators are very much in favor of involving parents in children's learning, but there is little consensus on which specific parental behaviors are likely to maximize children's achievement. If we can identify parental practices that are relatively successful in enhancing cognitive growth, we may be able to assist parents in helping their children reach their intellectual potential. Family involvement in the education of their children is essential for impressive
academic achievement. While research has shown that parental involvement in the school activities has a significant impact on the achievement of children, several barriers stand in the way of involvement with parents. \cite{Macy1997, Powell2010}.

More research is needed to understand what types of Parental Involvement are most beneficial. It is not clear, for instance, what the optimal level of participation is, what the saturation point is at which involvement becomes less helpful, and how the impact of involvement can affect parents' feelings about their children, parents' literacy, and self-esteem.

Good education is necessary for all who live in modern society, and then we must search for the alterable variables which can make a difference in the learning of children. Our basic research task is to understand further how variables can be altered and their consequent effect on students, teachers, and learning. In the field of education, interested in knowing the causes of educational outcomes, such as what causes increase student achievement, so that this information can improve our educational practices. Thus, it is possible to change the extent to which parents become involved in their children's education, but changing a parent's educational background or income level are beyond the realm of a school's influence.

5.2 Importance of Mathematics

Mathematics is one of the oldest disciplines of human knowledge, with a continuous line of development spanning 5000 years of human civilization. It originated in the collective curiosity of man since the times immemorial and it attempts to provide a body of knowledge through procedures that are objective. In the era of Science and Technology mere acquisition of arithmetical skills is not sufficient. \textit{National Policy on Education (1986)}, has envisaged that “Mathematics should be visualized as a means of training to think, to reason, and to analyse logically. It should be treated as a concomitant to any subject involving analysis and synthesis.”

In modern education system no curriculum framework at the national or international level is visualized where mathematics as one of the core components does not figure. It is part of every school curriculum all over the world and perhaps the only subject occupying unrivalled position. This provides sufficient evidence that mathematics has achieved central place in school curriculum. Out of a number of reasons that can be ascribed to it for this, one is that Mathematics has been seen for many centuries as the subject 'par excellence' in which reasoning powers could be
trained. It is a subject that develops an individual’s fundamental mental dispositions. The usefulness of mathematics in job opportunities and in the future lives of students as citizens has further strengthened its positions in school curriculum. In the last two centuries or so, mathematics has been used as a “screening device” for entry to different professional streams. The many fast growing occupations require much higher mathematical capabilities. Indicating that mathematics has achieved central place in school curriculum and it is visualized that it shall continue to enjoy this position in times to come. (Surja, 2002).

5.3 New Bloom’s Taxonomy

The cognitive category of Bloom’s Taxonomy commonly referred to as intellectual ability and skills may also be described as including the behaviours like remembering, reasoning, problem solving, concept formation and to a limited extent, creative thinking. According to old (Bloom, 1956) taxonomy of cognitive skills has six categories namely, Knowledge, Comprehension, Application, Analysis, Synthesis and Evaluation.

Fig.5.1.F.New Bloom’s Taxonomy of educational objectives

(Based on Pohl, 2000, Learning to Think, Thinking to Learn, p. 8)
The new terms are defined as:

- **Remembering**: Retrieving, recognizing, and recalling relevant knowledge from long-term memory.

- **Understanding**: Constructing meaning from oral, written, and graphic messages through interpreting, exemplifying, classifying, summarizing, inferring, comparing, and explaining.

- **Applying**: Carrying out or using a procedure through executing, or implementing.

- **Analyzing**: Breaking material into constituent parts, determining how the parts relate to one another and to an overall structure or purpose through differentiating, organizing, and attributing.

- **Evaluating**: Making judgments based on criteria and standards through checking and critiquing.

- **Creating**: Putting elements together to form a coherent or functional whole; reorganizing elements into a new pattern or structure through generating, planning, or producing.

(Anderson & Krathwohl, 2000)

5.4 Emergence of the Problem

The present investigation puts forth a multidimensional representation of Parental Involvement. The review of related research reveals that parental involvement is one of the key factors which have a major bearing on the development of a child. Researches reported on this variable have focused around varied dimensions of parental involvement. Results of many researches reveal that Parental Involvement plays a significant role in the child’s education and affects the child’s accomplishments in the long run. Parental participation in home work affected the mathematics achievement (Park, Byun and Kim, 2011), on high school students (Cho and Campbell, 2011). Three major dimensions in which parents reportedly get involved with their children development are behavioural involvement, personal involvement and providing intellectual climate at home. Incidentally as many as 110 types of factors of parental involvement have been shown to affect development of
Within the domain of personal involvement direct time given to child is the most prominent factor. Apart from direct participation, indirect and encouraging emotional climate also left a positive effect on mathematics performance. Besides above there are studies which reveal no difference with and without parental involvement (Powell, 2010). But one of the significant fact about these researches is that all of them have been conducted in different cultural settings. Only 1 to 2 percent studies have been reported on Indian culture that too in mathematics. It makes it all the more important that such conclusions be validated for Indian adolescents in typical Indian social and cultural milieu. It is therefore, difficult to generalize these findings for Indian settings because Parental Involvement is a variable which has its roots in culture and the modes and expressions of parental Involvement are different in Indian culture.

Also, studies placed on record have addressed the global aspects, but in respect of taxonomy investigator could find few studies, therefore, need of conducting precise investigation is clearly indicated. Hence, the present investigation is designed to fill up the gap in role of Parental Involvement in mathematics with respect to Taxonomic Categories. It is therefore, a humble attempt of the investigator to investigate these variables in Indian setting. Hence the problem has been stated as follows:

5.5 Statement of the Problem

EFFECT OF PARENTAL INVOLVEMENT ON PERFORMANCE OF ELEMENTARY SCHOOL STUDENTS IN MATHEMATICS AT BLOOM’S TAXONOMIC CATEGORIES

5.6 Delimitation of the Study

The study has been delimited in respect of:

- Only the CBSE schools were taken for the study.
- Only cognitive domains of Bloom’s Taxonomy were taken for mathematical performance i.e. remembering, understanding and higher order categories.
- The classes VI, VII and VIII of the elementary schools for the study were taken.
5.7 Objectives of the Study

The study has been designed in order to attain the following objectives:

- To develop the tests for selected mathematical skills, separately for grade VI, VII and VIII.
- To study the performance in mathematical skills at different Taxonomic Categories for students of VI, VII and VIII graders.
- To study the effect of parental involvement on performance in mathematical skills of VI, VII and VIII graders.
- To study the interaction effects of Taxonomic Categories and Parental Involvement on performance in mathematical skills of students of grade VI, VII and VIII.

5.8 Hypotheses

Ho.1: Mean achievement scores on Mathematical Skills of VI graders belonging to different levels of Parental Involvement do not differ.

Ho.1.1: Mean achievement scores on Mathematical Skills of VI graders belonging to high and low Parental Involvement do not differ.

Ho.1.2: Mean achievement scores on Mathematical Skills of VI graders belonging to high and average Parental Involvement do not differ.

Ho.1.3: Mean achievement scores on Mathematical Skills of VI graders belonging to average and low Parental Involvement do not differ.

Ho.2: Mean achievement scores on Mathematical Skills of VI graders on different category taxonomic categories of objectives do not differ.

Ho.2.1: Mean achievement scores on Mathematical Skills of VI graders are not different on Remembering and Understanding category of Bloom’s Taxonomy.

Ho.2.2: Mean achievement scores on Mathematical Skills of VI graders are not different on Remembering and Higher Order category of Bloom’s Taxonomy.
Ho.2.3: Mean achievement scores on Mathematical Skills of VI graders are not different on Understanding and Higher Order category of Bloom’s Taxonomy.

Ho.3: Parental Involvement and categories of Bloom’s Taxonomy do not interact in respect of mean achievement of Mathematical Skills of VI graders.

For High Parental Involvement

Ho.3.1: The mean scores on Mathematical Skills of VI graders will not be different for Remembering and Understanding categories of Bloom’s Taxonomy.

Ho.3.2: The mean scores on Mathematical Skills of VI graders will not be different for Remembering and Higher Order categories of Bloom’s Taxonomy.

Ho.3.3: The mean scores on Mathematical Skills of VI graders will not be different for Understanding and Higher Order categories of Bloom’s Taxonomy.

For Average Parental Involvement

Ho.3.4: The mean scores on Mathematical Skills of VI graders will not be different for Remembering and Understanding categories of Bloom’s Taxonomy.

Ho.3.5: The mean scores on Mathematical Skills of VI graders will not be different for Remembering and Higher Order categories of Bloom’s Taxonomy.

Ho.3.6: The mean scores on Mathematical Skills of VI graders will not be different for Understanding and Higher Order categories of Bloom’s Taxonomy.

For Low Parental Involvement

Ho.3.7: The mean scores on Mathematical Skills of VI graders will not be different for Remembering and Understanding categories of Bloom’s Taxonomy.
Ho.3.8: The mean scores on Mathematical Skills of VI graders will not be different for Remembering and Higher Order categories of Bloom’s Taxonomy.

Ho.3.9: The mean scores on Mathematical Skills of VI graders will not be different for Understanding and Higher Order categories of Bloom’s Taxonomy.

Ho.4: Mean achievement scores on Mathematical Skills of VII graders belonging to different levels of Parental Involvement do not differ.

Ho.4.1: Mean achievement scores on Mathematical Skills of VII graders belonging to high and low Parental Involvement do not differ.

Ho.4.2: Mean achievement scores on Mathematical Skills of VII graders belonging to high and average Parental Involvement do not differ.

Ho.4.3: Mean achievement scores on Mathematical Skills of VII graders belonging to average and low Parental Involvement do not differ.

Ho.5: Mean achievement scores on Mathematical Skills of VII graders on different taxonomic categories of objectives do not differ.

Ho.5.1: Mean achievement scores on Mathematical Skills of VII graders are not different on Remembering and Understanding category of Bloom’s Taxonomy.

Ho.5.2: Mean achievement scores on Mathematical Skills of VII graders are not different on Remembering and Higher Order category of Bloom’s Taxonomy.

Ho.5.3: Mean achievement scores on Mathematical Skills of VII graders are not different on Understanding and Higher Order category of Bloom’s Taxonomy.

Ho.6: Parental Involvement and categories of Bloom’s Taxonomy do not interact mean achievement of Mathematical Skills of VII graders.
For High Parental Involvement

Ho.6.1: The mean scores on Mathematical Skills of VII graders will not be different for Remembering and Understanding categories of Bloom’s Taxonomy.

Ho.6.2: The mean scores on Mathematical Skills of VII graders will not be different for Remembering and Higher Order categories of Bloom’s Taxonomy.

Ho.6.3: The mean scores on Mathematical Skills of VII graders will not be different for Understanding and Higher Order categories of Bloom’s Taxonomy.

For Average Parental Involvement

Ho.6.4: The mean scores on Mathematical Skills of VII graders will not be different for Remembering and Understanding categories of Bloom’s Taxonomy.

Ho.6.5: The mean scores on Mathematical Skills of VII graders will not be different for Remembering and Higher Order categories of Bloom’s Taxonomy.

Ho.6.6: The mean scores on Mathematical Skills of VII graders will not be different for Understanding and Higher Order categories of Bloom’s Taxonomy.

For Low Parental Involvement

Ho.6.7: The mean scores on Mathematical Skills of VII graders will not be different for Remembering and Understanding categories of Bloom’s Taxonomy.

Ho.6.8: The mean scores on Mathematical Skills of VII graders will not be different for Remembering and Higher Order categories of Bloom’s Taxonomy.

Ho.6.9: The mean scores on Mathematical Skills of VII graders will not be different for Understanding and Higher Order categories of Bloom’s Taxonomy.
Ho.7: Mean achievement scores on Mathematical Skills of VIII graders belonging to different levels of Parental Involvement do not differ.

Ho.7.1: Mean achievement scores on Mathematical Skills of VIII graders belonging to high and low Parental Involvement do not differ.

Ho.7.2: Mean achievement scores on Mathematical Skills of VIII graders belonging to high and average Parental Involvement do not differ.

Ho.7.3: Mean achievement scores on Mathematical Skills of VIII graders belonging to average and low Parental Involvement do not differ.

Ho.8: Mean achievement scores on Mathematical Skills of VIII graders on different taxonomic categories of objectives do not differ.

Ho.8.1: Mean achievement scores on Mathematical Skills of VIII graders are not different on Remembering and Understanding category of Bloom’s Taxonomy.

Ho.8.2: Mean achievement scores on Mathematical Skills of VIII graders are not different on Remembering and Higher Order category of Bloom’s Taxonomy.

Ho.8.3: Mean achievement scores on Mathematical Skills of VIII graders are not different on Understanding and Higher Order category of Bloom’s Taxonomy.

Ho.9: Parental Involvement and categories of Bloom’s Taxonomy do not interact in respect of mean achievement of Mathematical Skills of VIII graders.

For High Parental Involvement

Ho.9.1: The mean scores on Mathematical Skills of VIII graders will not be different for Remembering and Understanding categories of Bloom’s Taxonomy.
Ho.9.2: The mean scores on Mathematical Skills of VIII graders will not be different for Remembering and Higher Order categories of Bloom’s Taxonomy.

Ho.9.3: The mean scores on Mathematical Skills of VIII graders will not be different for Understanding and Higher Order categories of Bloom’s Taxonomy.

For Average Parental Involvement

Ho.9.4: The mean scores on Mathematical Skills of VIII graders will not be different for Remembering and Understanding categories of Bloom’s Taxonomy.

Ho.9.5: The mean scores on Mathematical Skills of VIII graders will not be different for Remembering and Higher Order categories of Bloom’s Taxonomy.

Ho.9.6: The mean scores on Mathematical Skills of VIII graders will not be different for Understanding and Higher Order categories of Bloom’s Taxonomy.

For Low Parental Involvement

Ho.9.7: The mean scores on Mathematical Skills of VIII graders will not be different for Remembering and Understanding categories of Bloom’s Taxonomy.

Ho.9.8: The mean scores on Mathematical Skills of VIII graders will not be different for Remembering and Higher Order categories of Bloom’s Taxonomy.

Ho.9.9: The mean scores on Mathematical Skills of VIII graders will not be different for Understanding and Higher Order categories of Bloom’s Taxonomy.

165
5.9 Methods of the study

5.9.1 Tools used

The following tools were used to collect the data:

- Achievement test: (Developed and validated by the investigator). The tests were made for class VI, VII and VIII for cognitive domain of Blooms Taxonomy.
- Parental Involvement Scale: Developed and standardized by Ahuja and Sharma (2002).

5.9.2 Sample

A sample is a group, which is selected from the population for the purpose of examination. Sample plays an important role since generalizations about the population are made from the findings based on sample, which will have validity of results depending upon the characteristics of sample itself.

The study was conducted on a sample of students of class VI, VII and VIII from three senior secondary schools of Chandigarh. 260 students constituted the sample.

For the selection of the sample the investigator employed Stratified Random Sampling Technique.

Table 5.1. Showing school wise distribution of the sample

<table>
<thead>
<tr>
<th>Sr.No.</th>
<th>Name of the School</th>
<th>No. of Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shishu Niketan School, Sector-22 D, Chandigarh</td>
<td>84</td>
</tr>
<tr>
<td>2</td>
<td>Shivalik Public School, Sector-41 D, Chandigarh</td>
<td>86</td>
</tr>
<tr>
<td>3</td>
<td>Government Model Senior Secondary School, Sector-10, Chandigarh</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>260</td>
</tr>
</tbody>
</table>

5.9.3 Design of the Study

A research design is the plan, structure and strategy of investigation conceived so as to obtain answers to research questions and to control variance (Lindquist, 1956). In the present study, the Descriptive Exploratory Method of research was
used and a 3x3 factorial design has been employed for analysis of the data. The method involves events that have already existed and may be related to a present condition. This method was chosen because of these distinctive advantages for the various aspects of parental involvement on cognitive skills of students.

In the present investigation the main dependent variable was performance in mathematical skills. The independent variables were Blooms Taxonomic categories and parental involvement which have been studied at three levels each. The schematic layout of the design has been shown in figure.

Fig.5.1 Showing Schematic layout of the design

Scores on Mathematical Skills of
- VI graders
- VII graders
- VIII graders

Abbreviations Used

For Parental Involvement
- HPI - High Parental Involvement
- API - Average Parental Involvement
- LPI - Low Parental Involvement

For Categories of Blooms Taxonomy
- R - Remembering
- U - Understanding
- Ho - Higher Order
5.9.4 Procedure

The study was conducted at two stages:

- **Stage I: Selection of the sample:** The procedure adopted for selection of the sample has already been discussed under the heading Sample.

- **Stage II: Collection of data:** The aim of the present investigation was to study impact of Parental Involvement. All the tools employed in this study were administered to final 260 students and their parents in all three schools of Chandigarh city.

- **Fixing Schedule**

 After the selection of the sample, principals and teachers of the selected schools were contacted with prior appointment. A schedule was fixed to collect information from the students of three schools with the help of the respective class teachers. On the scheduled date informal introduction with the students was done through their class teachers to develop rapport. Proper conditions for data collection were ensured before administering of tools.

 - **Administering the Tools**

 After establishing a proper rapport with the students, achievement test of mathematics was administered to small groups and in all it has taken nine days with every class, as only one class was given achievement test in one day. The testing conditions for all the students were kept as constant and uniform as far as possible. Before starting the testing session, it was ensured that the subjects were seated comfortably in a room where there was no outside disturbance. The subjects were told to solve all questions. Instructions for each test were given at the top of each questionnaire and the investigator has himself explained the instructions in clear terms and simple language for each test. The subjects were assured that the information revealed by them would be kept confidential, since it was being collected for the purpose of research only. When the collection of data from the students was over, the parents of these students were approached on parent-teacher meet and the scale of parental involvement were given to them. They submitted the forms next day. Few parents neither provided information at the time of meeting nor did they send the filled form through their children. After a little persuasion remaining forms were
collected only 15 parents did not provide information even after persuasion so they were dropped from the sample at the initial stage only.

5.9.5 Statistical techniques used

- Descriptive statistics such as Mean & Standard Deviation were worked out to study the general nature of the sample.
- 3x3 Analysis of variance followed by t-tests was employed to analyse data for significant F-ratios.

5.10 MAJOR FINDINGS

Following conclusions were drawn on the bases of analyses:

- **Conclusions based on 3x3 ANOVA on scores of mathematical skills of students of grade VI.**

 - The mean achievement scores on mathematical skills of grade VI were different for students belonging to parents having high average and low average involvement.
 - The mathematical skills of VI grade students belonging to high Parental Involvement group were higher than that of low Parental Involvement group.
 - The mathematical skills of VI grade students belonging to high Parental Involvement group were higher than that of average Parental Involvement group.
 - The mathematical skills of VI grade students belonging to average Parental Involvement group were higher than that of low Parental Involvement group.

 - The mean achievement scores on mathematical skills of VI graders were different at three categories of Bloom’s Taxonomy of objectives.
 - The mathematical skills of grade VI students were higher at Remembering category than at Understanding category.
• The mathematical skills of grade VI students were higher at Remembering category than at Higher Order category.
• The mathematical skills of grade VI students were higher at Understanding category than at Higher Order category.
• The two variables Parental Involvement and Bloom’s Taxonomic categories did not interact to yield differences in mathematical skills of grade VI students.

➢ Conclusions based on 3x3 ANOVA on scores of mathematical skills of students of grade VII.

• The mean achievement scores on mathematical skills of grade VII were different for students belonging to parents having high average and low average involvement.
 • The mathematical skills of VII grade students belonging to high Parental Involvement group were higher than that of low Parental Involvement group.
 • The mathematical skills of VII grade students belonging to high Parental Involvement group were higher than that of average Parental Involvement group.
 • The mathematical skills of VII grade students belonging to average Parental Involvement group were higher than that of low Parental Involvement group.
• The mean achievement scores on mathematical skills of VII graders were different at three categories of Bloom’s Taxonomy of objectives.
 • The mathematical skills of grade VII students were higher at Remembering category than Understanding category.
 • The mathematical skills of grade VII students were higher at Remembering category than Higher Order category.

170
• The mathematical skills of grade VII students were higher at Understanding category than Higher Order category.

• The two variables Parental Involvement and Bloom’s Taxonomic categories were found to interact to yield differences in mathematical skills of grade VII students.

For High Parental Involvement group:
• The mathematical skills of grade VII students were higher at Remembering category than at Understanding category.

• The mathematical skills of grade VII students were higher at Remembering category than at Higher Order category.

• The mathematical skills of grade VII students were higher at Understanding category than at Higher Order category.

For Average Parental Involvement group:
• The mathematical skills of grade VII students were higher at Remembering category than at Understanding category.

• The mathematical skills of grade VII students were higher at Remembering category than at Higher Order category.

• The mathematical skills of grade VII students were higher at Understanding category than at Higher Order category.

For Low Parental Involvement group:
• The mathematical skills of grade VII students were higher at Remembering category than at Understanding category.

• The mathematical skills of grade VII students were higher at Remembering category than at Higher Order category.

• The mathematical skills of grade VII students were higher at Understanding category than at Higher Order category.

Conclusions based on 3x3 ANOVA on scores of mathematical skills of students of grade VIII.
• The mean achievement scores on mathematical skills of grade VIII were different for students belonging to parents having high average and low average involvement.

• The mathematical skills of VIII grade students belonging to high Parental Involvement group were higher than that of low Parental Involvement group.

• The mathematical skills of VIII grade students belonging to high Parental Involvement group were higher than that of average Parental Involvement group.

• The mathematical skills of VIII grade students belonging to average Parental Involvement group were higher than that of low Parental Involvement group.

• The mean achievement scores on mathematical skills of VIII graders were different at three categories of Bloom’s Taxonomy of objectives.

• The mathematical skills of grade VIII students were higher at Remembering category than at Understanding category.

• The mathematical skills of grade VIII students were higher at Remembering category than at Higher Order category.

• The mathematical skills of grade VIII students were higher at Understanding category than at Higher Order category.

• The two variables Parental Involvement and Bloom’s Taxonomic categories were found to interact to yield differences in mathematical skills of grade VIII students.

For High Parental Involvement group:

• The mathematical skills of grade VIII students were higher at Remembering category than at Understanding category.

• The mathematical skills of grade VIII students were higher at Remembering category than at Higher Order category.
• The mathematical skills of grade VIII students were higher at Understanding category than at Higher Order category.

For Average Parental Involvement group:
• The mathematical skills of grade VIII students were higher at Remembering category than at Understanding category.
• The mathematical skills of grade VIII students were higher at Remembering category than at Higher Order category.
• The mathematical skills of grade VIII students were higher at Understanding category than at Higher Order category.

For Low Parental Involvement group:
• The mathematical skills of grade VIII students were higher at Remembering category than at Understanding category.
• The mathematical skills of grade VIII students were higher at Remembering category than at Higher Order category.
• The mathematical skills of grade VIII students were higher at Understanding category than at Higher Order category.

5.11 EDUCATIONAL IMPLICATIONS OF THE STUDY

It has already been pointed out that involvement and communication between parent and child play a vital role today in enhancing the child’s academic achievement. The findings of the present investigation reveal that Parental Involvement has been found to be an important factor in enhancing the children’s achievement especially in mathematical skills. Findings of several research shows that variables such as parental belief system, expectations, styles, and behavior patterns are related to academic and cognitive outcomes of children. Hence, the parents, teachers and the educational psychologists can be made aware of the contribution of the parents in the development of the child. Such programmes should be developed for children in school in which parents can also participate. The interaction and co-operation of parents and teachers can help in creating a wholesome integrated development of the child.
It can also be useful for the psychologists for systematic appraisal of the teachers in the higher-secondary classes. The teachers can be made aware of their interactional behavior with parents and in turn parents can be told about the positive effects of Parent-child interactions. Further, suggestions for improving them for the development of the children can be suggested.

Some of the achievement related factors that have been found to be associated with Parental Involvement, and Bloom’s Taxonomy can be taken note of. These findings can help in specifying psychological aspects of parents and child’s behavior that may be favourable for enhancing the achievement of the child at different categories of cognitive domain of Bloom’s Taxonomy.

Parents can be made aware of the results of present investigation and may be encouraged to improve their interaction with children by devoting more time to children, by taking personal interests in their studies and by answering their questions with patience and having more of verbal communication with them by emotional and varied experiences and by conversing with them regarding different things around them. Positive reinforcement to children may also help in enhancing his achievement. As, mathematics is subject of reasoning and student need guidance even after school hours. Thus, parent must be guided not to force their children to just remember basics of mathematics i.e. rules, formulas, theorems but to concentrate on solving various questions covering many areas of mathematics and use it in daily life situation.

The results of the present investigation are equally useful for curriculum planners who can incorporate activities which may involve parental participation. It will not only lead to better and integrated development of the child, but also will enhance their skills. For parents it will be a satisfying experience to join school/teacher for the welfare of their child. Counselors can take advantage of the results of present investigation to identify hard spots and aspects where parents can be involved resulting into better development of children’s skills.

5.12 SUGGESTIONS FOR FURTHER RESEARCH

The investigator is quite aware of the limitations under which the present research was conducted and therefore accepts that no sweeping generalizations could be made. These findings are only indicative of trends and hence are to be viewed in the light of following limitations:
• The sample of the children was drawn from the schools of Chandigarh only.
• The sample was limited only to the urban areas.
• The study was limited to students of class VI, VII and VIII.
• The variables studied were limited to Parental Involvement and categories of Blooms Taxonomy.
• Study was conducted on both boys and girls.

The researcher very humbly offers the following suggestions for further research that could be undertaken by the prospective researchers:

• Based on the present research about Parental Involvement and Blooms Taxonomy it is clear that an empirical connection between the two exists. To complement this research, further research is needed that can cover the present variables in a broader perspective like motivational achievement, study habits of students, rapport between school and parents for better achievement. Research is needed in which efforts are made to bridge the widening gap between parents and students.

• For future study, it is recommended that this research be replicated at other levels to determine if the results of the study were influenced by other environmental factors in the school / college or other educational institutions.

• Relative effectiveness of the High Parental Involvement, Average Parental Involvement and Low Parental Involvement may be researched at large scale, especially in relation to children of different age groups like at the elementary level, Board Level, College level.

• Some experimental studies can be planned and conducted to study the effect of parental education programmes by the schools to improve Parental involvement and Parent-child interactions and their impact on realizing the potential of the child.

• It is recommended that further research be conducted on effectiveness of the Parent-child interactions, used in this study specifically on students of other streams like sciences or social studies and subject wise analysis be made which could not be done in the present investigation due to limitation of time.
Findings of the study support the need for further research to involve investigations that see academic achievement in the light of emotional needs of children. Such research may serve to enhance the basic understanding of parents towards children. Also, the effect of involvement of only one of the parents in the child’s behavior and academics can be studied.

The present study focused only on Mathematical Skill. Further researches may be conducted on other skills like in languages or skills in science and social sciences.

A longitudinal study may be planned at various levels of schools beginning with grade I to grade X and explore the relationships between Parental and skills in various subjects.

Some research studies may be designed with dimensions of Parental Involvement other than the one’s used in the present investigation.

Only cognitive category of Blooms Taxonomy was taken up for the study. Further research can be carried on categories of Affective and Psychomotor.