Annexure-I

Relationship between Treasury Bill Rates in India: An Empirical Analysis
ARTICLES

Who is Afraid for the Creative Industries? Creativity and the Creation of Knowledge in Arts and Economy: Challenges and Opportunities for the Schools of Fine Arts
Maarten Regouin, MA

An Empirical Study of Business Strategy of Export Oriented Indian Leather Industrial Units
Gaurav Dahiya and Sanket Vij

Applicability of Western Human Resource Management Practices in Bangladesh for Indigenous Organizational Success: A Study on Cultural Perspective
Hare Krishna Kundo

Consumers’ Preference of Package Attributes and Willingness to Buy Ready-to-Eat Food
Garima Gupta, Ashish Jaiswal and Rounak Chandak

Volatility Swings in Indian Equity Market through Generalized Autoregressive Conditional Heteroskedasticity Model
Kiran Mehta and Renuka Sharma

Quality in Retail: A Qualitative Study of Construct Domain and Dimensions
Ekta Duggal and Harsh V Verma

Customers Perception towards Service Quality Delivery in Retail Malls in the Punjab
Jasveen Kaur and Chandandeep Kaur

Examining Validity of Known Dividend Models in Indian Non Banking Finance Companies
Suminder Kaur Bawa and Prabhjot Kaur

Impact of Board Structure and Board Activity on Corporate Performance - A study of Indian Companies
Sonia Sharma

Measuring Antecedents of Children’s Attitude towards Television Advertising
Anju Gulla and Harsh Purohit

Relationship between Treasury Bill Rates in India: An Empirical Analysis
Smita Sharma
Contents

Who is Afraid for the Creative Industries? Creativity and the Creation of Knowledge in Arts and Economy: Challenges and Opportunities for the Schools of Fine Arts
Maarten Regouin, MA

An Empirical Study of Business Strategy of Export Oriented Indian Leather Industrial Units
Gaurav Dahiya and Sanket Vij

Applicability of Western Human Resource Management Practices in Bangladesh for Indigenous Organizational Success: A Study on Cultural Perspective
Hare Krishna Kundo

Consumers’ Preference of Package Attributes and Willingness to Buy Ready-to-Eat Food
Garima Gupta, Ashish Jaiswal and Rounak Chandak

Volatile Swings in Indian Equity Market through Generalized Autoregressive Conditional Heteroskedasticity Model
Kiran Mehta and Renuka Sharma

Quality in Retail: A Qualitative Study of Construct Domain and Dimensions
Ekta Duggal and Harsh V Verma

Customers Perception towards Service Quality Delivery in Retail Malls in the Punjab
Jasveen Kaur and Chandandeep Kaur

Examining Validity of Known Dividend Models in Indian Non Banking Finance Companies
Sumninder Kaur Bawa and Prabhjot Kaur

Impact of Board Structure and Board Activity on Corporate Performance - A study of Indian companies
Sonia Sharma

Measuring Antecedents of Children’s Attitude towards Television Advertising
Anju Gulla and Harsh Purohit

Relationship between Treasury Bill Rates in India : An Empirical Analysis
Smita Sharma

87 - 95

86 - 88

80 - 86

87 - 95

96 - 101
Relationship between Treasury Bill Rates in India: An Empirical Analysis

*Smita Sharma

ABSTRACT
Objective of the present paper is to see whether there exists any relationship between Treasury Bill rates of various maturities in India, in post interest rate deregulation period. Stationarity of the series as well as the residuals have been tested by Augmented Dickey-Fuller (ADF) test statistic. Further Engle-Granger (EG) cointegration technique has been used to find long run co-integration followed by Error Correction Mechanism (ECM). The results show that 6M and 3M Treasury Bills are co-integrated and 0.32 of the discrepancy in the rates in previous month gets eliminated in present month. This implies long run relationship and short run correction in Treasury Bill rates, which is important for the market of Treasury Bills of various maturities to run efficiently.

Keywords: Government borrowing, Treasury bill rate, Cointegration, Error Correction

I. Introduction
In a Developing Economy, demand for resources to provide social and economic infrastructure has to be balanced with its resource generating capacity. In most of the underdeveloped countries the vicious circle of poverty (as predicted by Nurkse, 1962) continues. To break this vicious circle and move towards self sustainng growth path, large amount of initial investment is necessary. This need for resources can be met either through tax and non-tax sources of revenue or through Government borrowing, also called as public debt.

Interest rate on Government borrowing has two-way implications. Higher rate may bring in more lenders and hence increased availability of funds, but will also lead to higher interest payment burden on the revenue account, apart from the interest burden on future generations. Moreover, in a market driven capitalistic economy, most markets follow a reference or benchmark rate. Generally, a risk neutral rate, such as Treasury Bill rate is taken as benchmark because of its gilt edged character. This, coupled with the realization about growing integration of financial markets worldwide, makes an important argument in favour of studying the pattern of Treasury Bill interest rates in India.

II. Review of Literature
The issue of public debt is not a contemporary one. In the history of economic thought there have been discussions and divided opinions regarding benefits and cost of public debt. Hume (1742) was one of the first English writers to address specifically on the subject of public credit. Smith (1776) devoted 40 pages of wealth of nations to public debt. Economists like Keynes (1936) supported deficit budgeting, giving the argument that it would help in creating effective demand in the economy. The Keynesian view envisaged that an increase in autonomous government expenditure, whether investment or consumption, financed by borrowing would cause output to expand through a multiplier process.

Studies available on post-reform public debt scenario have concentrated mainly on sustainability of debt, as that of Rangarajan and Srivastava (2003), Rajaraman and Mukhopadhyay (2005). There are significant studies by Domar (1944), Barro (1974), Moorthy, Singh and Dhal (2000) which have focused on issues like bond financing, interest rates and burden of debt.

As far as Treasury Bill rate dynamics are concerned, in International literature, one of the foremost studies by Hall, Anderson and Granger (1992) showed that yields of U.S. Treasury Bills are cointegrated post 1982. This cointegrating relationship further implied a single non-stationary common factor underlying the time series behaviour of each yield to maturity. The study concluded that for US economy, an error correction model which uses spreads as the error correction terms is unstable over the Federal Reserve's policy regime changes.

In a 1992 study, Hafer, Hein and MacDonald compared four readily available 1-quarter-ahead forecasts of the 3-month U.S. Treasury Bill rate. The forecasts considered were: a prediction from the futures market, a forecast derived from an implicit forward rate calculation, a survey-gathered forecast, and a no-change forecast. Each forecast was examined for general forecast accuracy and for the extent of bias contained in each forecast over the 12-year period 1977-88. Results indicated that the futures-rate statistically dominates the other three forecasts, while the survey and forward rate projections generally are found to be the least accurate and most biased.

In their 1992 NBER working paper, Hendershott and Peek sought to identify the underlying determinants of the major movements in real six-month Treasury Bill rates. They showed that the rise in real interest rates between the middle 1970s and early 1980s resulted from a variety...
of factors like OPEC shock, which lowered investment demand and increased world saving by transferring wealth from the high-consuming developed countries to OPEC. Secondly, tight money, high inflation, and heightened nuclear fear all contributed to real rates becoming unusually high in the early 1980s. They concluded that the decline in real rates to more normal levels in the 1984-88 period was due to multiple factors like lower inflation, declining marginal tax rates, and easy monetary policy.

Chan et al. (1992) made an empirical comparison of alternative models of the short-term interest rate by estimating and comparing a variety of continuous-time models of the short-term riskless rate using the Generalized Method of Moments, and found that the most successful models in capturing the dynamics of the short-term interest rate are those that allow the volatility of interest rate changes to be highly sensitive to the level of the riskless rate. Duffee (1996) showed increase in the importance of two types of variation in Treasury Bill yields for US economy beginning in the early 1980s and suggested that idiosyncratic variation in individual short-maturity (less than three months) Bill yields reflects increased market segmentation. Sarno and Thornton (2003) examined the dynamic relationship between two key US money market interest rates—the federal funds rate (FF) and the 3-month Treasury Bill rate using daily data over the period from 1974 to 1999. They found that long-run relationship between these two rates was remarkably stable across monetary policy regimes of interest rate and monetary aggregate targeting. Vasvari (2004) employed monthly short-term interest rate data over the 1992-2002 period to investigate the influence that the Japanese and the American interests exert on interest rates in India; using cointegration and causality tests to find the existence of a steady-state relationship of short-term interest rates in India with both US and Japan. The findings indicated that interest rates in India responded well to those in US and Japan and confirmed that the national short-term interest rate linkage was a steady state, long-run phenomenon, and rates were cointegrated. Dua and Raje (2010) examined the determinants of the Government yields in India using weekly data from April 2001 through March 2009, covering Treasury Bills with residual maturity of 15-91 days and Government securities of residual maturity one, five and ten years respectively. Their empirical estimates showed that a long-run relationship exists between each of these interest rates and the policy rate, rate of growth of money supply, inflation, interest rate spread, foreign interest rate and forward premium. At the same time, the empirical results also showed that the relative importance of the determinants varies across the maturity spectrum. The normalized generalized variance decompositions suggested that the policy rate and the rate of growth of high powered money are less important in explaining the proportion of variation in longer term interest rates. Sanati (2010) against the backdrop of financial liberalisation examined India’s financial integration, both on the domestic and international fronts. For 2001-2007, empirical evidence revealed high liquidity in the Indian capital market. The Johansen and Juselius cointegration test, in a multi-equation framework revealed co-movement among the domestic money, capital and foreign exchange markets with strong co-movement between the short-term money and foreign exchange markets. Using a stochastic time series analysis, paper showed that the Law of One Price (LOOP) holds for Indian call money market rates. The findings on the 91-day Treasury Bill rate and the 10-year government bond yield reveal very weak cross-border cointegration.

III. Objectives

- To see whether there is any long run co-integration between three month and six month Treasury Bill rate in India.
- To examine the short run relationship between three month and six month Treasury Bill rate in India.

IV. Data Sources and Methodology

The study is based on monthly data on three and six month Treasury Bill interest rates collected from RBI ‘Handbook of Statistics on Indian Economy’ for the period April 1996 to June 2012. Both the chosen rates are taken in per cent form. The methodology firstly involves test of stationarity of Treasury Bill series using Unit root test (Augmented Dickey-Fuller Test). If a series is found to be non stationary, spurious regression problem may arise from regressing a non stationary time series on one or more non stationary time series. In such a situation, one must transform a non stationary time series to make it stationary (Gujarati, 2007). Further I have used Engle-Granger test to show the long run co-integration between two series. Engle-Granger Error Correction Mechanism is used to reveal the nature of short run relationship. The choice of the time period is on the basis of issuance of Treasury Bills. Slight gaps in the data have been filled on the basis of linear interpolation.

Figure I graphically shows the relationship between two rates for a total of 195 observations. Per cent yield on T-Bills is shown on vertical axis, whereas time is shown on horizontal axis. The Treasury Bill rate in India has shown quite a variation in the period under consideration. The three month Treasury Bill rate has varied between 13.7 per cent in April 1996, and January 1998 to 3.1 per cent in July 2009. Similarly fluctuations are seen in six month Treasury Bill rates (as shown in figure II). Figure I also reveals that more or less both rates are moving in tandem with each other.
V. Empirical Estimation:

On the basis of unit root test of stationarity, 3M T Bills was found to be stationary at 5% level while taking only intercept, though this series was found to be non-stationary at 5% when intercept and trend both were taken, but trend was not significant. Similarly 6M T Bills series was found to be stationary at level (with drift). For three month Treasury Bill rate,

Null Hypothesis: 3MTBR has a unit root/ is not stationary
Alternate Hypothesis: 3MTBR does not have unit root/ is stationary

Stationarity in a time series is important, because if a time series is non stationary, one can study its behaviour only in the time period under consideration and it is not possible to generalise the results to other time periods. Even if series comes out to be nonstationary at level; (i.e. if null hypothesis is accepted), attempt has to be made to see the order at which it becomes stationary (at first difference or at second difference and so on) so that order of cointegration could be found. According to Engle Granger methodology if two series should be stationary at same order I (d), only then one can find the cointegration between them.

Table I

<table>
<thead>
<tr>
<th>3M T BR</th>
<th>Constant and Trend</th>
<th>Constant</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>At Level</td>
<td>-3.133095 (-3.433278)</td>
<td>-3.559294 (-2.876356)</td>
<td>Reject null Hypothesis at level with constant [0.0137]</td>
</tr>
</tbody>
</table>

Notes: *Augmented Dickey-Fuller (tau) test statistic is shown in () brackets, **MacKinnon (1996) one-sided p-values are given in { } brackets, ***All results are at 5 per cent level of significance.

Similarly, for six month Treasury Bill rate,

Null Hypothesis: 6MTBR has a unit root/ is not stationary
Alternate Hypothesis: 6MTBR does not have unit root/ is stationary

If six month T-Bill series is not stationary at level, then one can see the long run relationship between three and six month Treasury Bills only if it becomes stationary at same level of differencing (first difference or more) as that of three month T-Bill rate.

Table II

<table>
<thead>
<tr>
<th>6 M T BR</th>
<th>Constant and Trend</th>
<th>Constant</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>At Level</td>
<td>-2.684606 (-3.431356)</td>
<td>-2.917742 (-2.876277)</td>
<td>Reject null Hypothesis at level with constant [0.0082]</td>
</tr>
</tbody>
</table>

Notes: *Augmented Dickey-Fuller (tau) test statistic is shown in () brackets, **MacKinnon (1996) one-sided p-values are given in { } brackets, ***All results are at 5 per cent level of significance.
Though both series were found to be stationary, as the paper wanted to find both long run as well as short run relationship between Treasury Bill rates, I have used Engel-Granger cointegration regression to find long run relationship followed by error correction mechanism (ECM) for short run relationship.

I have used the following cointegration regression:

$$TB_6t = \alpha_0 + \alpha_1 TB_3t + U_t$$

Where $$U_t = TB_6t - \alpha_0 - \alpha_1 TB_3t$$

Regressioning the 6-month TBR on 3-month TBR following regression was obtained:

$$\frac{TB_6t}{TB_3t} = 0.52 + 0.974$$

Regressed on 6-month TBR on 3-month TBR following regression was obtained:

$$\frac{TB_6t}{TB_3t} = 0.52 + 0.974$$

R2 = 0.8799 (88%) R2 =0.8793

The value of R square and adjusted R square was very high. Then i applied the unit root test to the residuals obtained from this regression, residuals were found to be stationary (Table III). Stationarity of residual (error term) shows long run relationship between two Treasury Bill rates. Both were found to be integrated at order zero I(0).

Null Hypothesis: Residual U has a unit root/ is not stationary
Alternate Hypothesis: Residual U does not have unit root/ is stationary

Table III

<table>
<thead>
<tr>
<th>Residual Stationarity</th>
<th>Constant and Trend</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>At Level</td>
<td>-5.411483*</td>
<td>Reject null Hypothesis at level with constant and trend</td>
</tr>
<tr>
<td></td>
<td>(-1.433278)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.0001]</td>
<td></td>
</tr>
<tr>
<td>Significant trend</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: *Augmented Dickey-Fuller (t statistics) test statistic is shown in () brackets, **MacKinnon (1996) one-sided p-values are given in { } brackets. ***All results are at 5 per cent level of significance.

Error Correction Mechanism (ECM)

As I also wanted to see short run behaviour of Treasury Bills, I further used error correction model (ECM) represented as,

$$\Delta TB_6t = \alpha_0 + \alpha_1 TB_3t + \alpha_2 U_{t-1} + \alpha_3$$

and got following results:

$$\Delta TB_6t = -0.006 + 0.517 \Delta TB_3t + 0.318 I_t$$

$$t = (10.192) (15.337) (4.690)$$

$$Sig. = (0.848) (0.000) (0.000)$$

Where I_t is the lagged value of the error correction term from the preceding period.

$$R^2 = 0.559 (56\%) \ \ \ \ \ \ \ \ \ \ \ \ \ Durbin-Watson = 2.002$$

VI. Discussion of the Results

For any analysis based upon financial time series, it is important to see whether the time series is stationary or not. Stationary series means the mean and variance of the series are constant over time and the value of covariance between the two time periods depends only on the distance between the two time periods and not the actual time at which the covariance is computed. Stationarity is important because if a time series is nonstationary one can study its behaviour only for the time period under consideration, and it will not be possible to generalise it to other time periods. That means for the purpose of forecasting, a nonstationary time series may be of little practical value. Gujarati, 2007. Furthermore, regression of a nonstationary series on other nonstationary time series may produce spurious regression. In such a situation, one solution is to see whether two series are cointegrated or not. Two or more variables are said to be cointegrated if they have a long term relationship between them. According to Granger (1986), a test for cointegration can be thought as a pre-test to avoid spurious regression.

Objective of the present study is to see if there is any relationship between Treasury Bills of various maturities in India. Though on plotting, various Treasury Bills (14 day, 91 day, 181 day and 364 day) seemed to follow approximately similar trends, aim was to prove the relationship empirically. The analysis was done using data on Treasury Bills of three month (91 days) and six month (181 days) maturity. Individually, the T Bill series were found to be stationary at level and empirical analysis shows that there is a stable long term relationship between them. The residual error term was found to be stationary showing that the two series were cointegrated i.e. there is a long term equilibrium relationship between them.

Despite having a long term equilibrium relationship, there may be disequilibrium in short run. The error term U_t in equation (1) can be called as equilibrium error and can be used to tie the short run behaviour of T-Bill rates to their long run behaviour. For this, I have used error correction mechanism (ECM) as shown in equation (3).
ECM equation (3) shows that change in six month T-Bill rate (ΔT_{B6t}) depends on change in three month T-Bill rate (ΔT_{B3t}) as well as on equilibrium error term. Where Δ is first difference operator, is random error term and U_{t-1} is one period lagged value of error term from equation (1). The absolute value of β_2 decides the quickness with which equilibrium is restored between two rates.

Figure II: Plots of Actual, Fitted and Residual Series of 6M TBR

The results show that 6M and 3M Treasury Bills are cointegrated and 0.31 of the discrepancy in the rates in previous month gets eliminated in present month. Since T-Bill rates are taken in per cent form, results show that if the six month Treasury Bill rate was higher than three month Treasury Bill rate more than expected in previous month, this month it will be reduced by 0.318 i.e. 32 per cent to restore the long run equilibrium relationship between the two rates.

VII Conclusion

Prior to April 1997 RBI was a captive holder of government for the sale of these Treasury Bills according to RBI report on currency and finance (2004-05). The origins of ad hoc Treasury Bills to finance Government deficit can be traced to the First Five Year Plan, although their volume was to be limited to the extent that it was non inflationary. However, an operational arrangement in early 1955, which was reached between the Government of India and the Reserve Bank of India, enabled automatic creation of ad hoc Treasury Bills to restore Central Government’s cash balance to the minimum stipulated level. Although initially it was supposed to be a temporary arrangement but with time ad hoc Treasury Bill financing as well as their funding into dated securities became a regular feature. As it was leading to monetisation of debt, as a part of post reform financial market restructuring, an agreement between RBI and Government led to phasing out of ad-hoc T-Bills since 1.4.1997. It is after 1997 that Treasury Bill market in India has started becoming independent. The results of present paper show long run relationship and short run correction in Treasury Bill rate, which is important for the market of Treasury Bills of various maturities to run efficiently.

References :

Handbook of Statistics on Indian Economy, Reserve Bank of India 2011-12.

About the Author

Smita Sharma is working as Assistant Professor in Department of Economics, Panjab University, Chandigarh since November, 2008. She is teaching Economics of Human Resource Development and Public Finance at Post Graduate Level. She holds Degree of M. Phil., from Department of Economics, Panjab University, Chandigarh and is pursuing her Ph.D. in the field of Public Finance on Indian Public Debt and Policy in Post Reform Period. She is also a Member of Indian Economic Association.

Reference # Envision - C -11

Relationship between Treasury Bill Rates in India...