Chapter 1 General Introduction
1.1. Pseudomonads
 1.1.1. Pseudomonas aeruginosa
 1.1.1.1 Environmental vs Clinical isolates of Pseudomonas aeruginosa
 1.1.2. Antagonism of Pseudomonas
1.2. Vibriosis in aquaculture and its control
1.3. Pseudomonas as a probiotic in aquaculture
1.4. Phenazines from Pseudomonas aeruginosa
 1.4.1. Pyocyanin, an anti-vibrio phenazine compound produced by Pseudomonas aeruginosa
 1.4.1.1 Applications of Pyocyanin
 1.4.1.2. Biosynthetic pathway of pyocyanin
 1.4.1.3. Genetics of pyocyanin biosynthetic pathway
 1.4.1.4. Mode of action of pyocyanin in target cells.
 1.4.1.5 Environmental degradation, Inactivation and Detoxification of pyocyanin molecule
1.5. Significance of the work and objectives

Chapter 2 Identification of Pseudomonas isolated from various ecological niches and its antagonism to pathogenic vibrios in aquaculture
2.1. Introduction
2.2. Materials and Methods
 2.2.1. Bacterial isolates
 2.2.2. Phenotypic characterization
 2.2.2.1. Motility assay
 2.2.2.2. Oxidation Fermentation reaction
 2.2.2.3. Kovac’s Oxidase test (Cytochrome oxidase activity)
 2.2.2.4. Production of Indole
 2.2.2.5. Arginine dihydrolase test
 2.2.2.6. Catalase test
 2.2.2.7. Production of fluorescent pigment
 2.2.2.8. Production of lecithinase
 2.2.2.9. Hydrolysis of glucose
 2.2.2.10. Citrate utilization test
 2.2.2.11. Sudan black test
 2.2.2.12. Growth at 4°C and 42°C.
 2.2.3. Molecular characterization
 2.2.3.1. Extraction of total DNA
 2.2.3.2. PCR amplification of the 16S r RNA gene
Chapter 3 Saline dependent production of pyocyanin in *Pseudomonas aeruginosa* originated from different ecological niches and their selective application in aquaculture

3.1. Introduction 43

3.2. Materials and methods 45

3.2.1. Bacterial isolates 45

3.2.2. Test of halophilism: saline-dependent production of pyocyanin and bacterial biomass 45

3.2.2.1. Growth 46

3.2.2.2. Quantification of pyocyanin 46

3.2.2.3. Antagonistic activity 46

3.2.3. Effect of NaCl as substitute for seawater 47

3.2.4. Statistical analysis 47

3.3. Results 47

3.3.1. Test of halophilism: saline-dependent production of pyocyanin and bacterial biomass 47

3.3.2. Antagonism to *Vibrio harveyi* at different salinities 48

3.3.3. Effect of NaCl substituted for seawater 48

3.4. Discussion 48

Chapter 4 Cloning and overexpression of *Phz* genes encoding phenazine biosynthetic pathway for the enhanced production of pyocyanin in *Pseudomonas aeruginosa MCCB117*

4.1. Introduction 55

4.2. Material and methods 59

4.2.1. Extraction of genomic DNA from *Pseudomonas aeruginosa MCCB117* 59
4.2.2 Primers designed for the amplification of pyocyanin biosynthetic genes 60
4.2.3 Amplification of pyocyanin biosynthetic genes using long PCR from *Pseudomonas* MCCB117 61
4.2.4 Plasmid used for cloning the pyocyanin gene 61
4.2.5 Extraction and purification of pUCP24 plasmid 62
4.2.6 Restriction digestion of pUCP24 and treatment with Calf Intestinal Phosphatase (CIP) 62
4.2.7 Gel purification of linearised and CIP treated pUCP24 plasmid 63
4.2.8 T-Tailing of purified plasmid (pUCP24) and A-Tailing of the amplified PCR product (pyocyanin biosynthetic pathway genes). 63
4.2.9 Ligation of A-tailed pyocyanin biosynthetic pathway genes with the T-tailed pUCP24 vector 64
4.2.10 Transformation of pUCP24 vector into *E.coli* DH5α by heat shock method 64
4.2.11 Plasmid extraction (Midi preparation) 64
4.2.12 Restriction digestion. 65
4.2.13 Confirmation of insert orientation. 65
4.2.14 Transformation of pUCP24 vector encoding pyocyanin biosynthetic gene(s) into wild strain *P. aeruginosa* (MCCB117) to get genetically modified PA-pUCP-Phz++. 66
 4.2.14.1 Preparation of electrocompetent *P. aeruginosa* MCCB117 cells 66
 4.2.14.2 Electroporation of *P. aeruginosa* MCCB117 66
4.2.15 Plasmid extraction from electroporated *P. aeruginosa* (MCCB117) 67
4.2.16 Confirmation of the inserted gene 67
4.2.17 Expression of pyocyanin gene in PA-pUCP-Phz++ 68
4.2.18 Quantification of pyocyanin production in PA-pUCP-Phz++ 68

4.3 Results 68
4.3.1 DNA extraction 68
4.3.2 Amplification of pyocyanin biosynthetic genes using long PCR from *Pseudomonas* MCCB117 69
4.3.3 Restriction digestion of pUCP24 vector and treatment with Calf Intestinal Phosphatase (CIP) 69
4.3.4 Ligation of pyocyanin biosynthetic pathway genes to pUCP24 vector 69
4.3.5 Transformation into *E.coli* DH5α cells 69
4.3.6 Restriction digestion of cloned pUCP24 vector containing pyocyanin biosynthetic pathway gene. 70
4.3.7 Confirmation of insert orientation in pUCP24 vector. 70
4.3.8 Transformation of *Pseudomonas aeruginosa* MCCB117 to develop genetically modified *P. aeruginosa* PA-pUCP-Phz++. 70
4.3.9 Plasmid extraction and confirmation of the inserted gene from electroporated *P. aeruginosa* (MCCB117) 70
Chapter 5 Development of an appropriate downstream process for large scale production of pyocyanin from PA-pUCP-Phz++; Structural elucidation and functional analysis of the purified compound 78

5.1. Introduction 78

5.2. Materials and Methods 80

5.2.1. Development of a downstream process for the large scale production of pyocyanin from PA-pUCP-Phz++ 80

5.2.1.1. Bacterial strain and culture condition 80

5.2.1.2. Collection of supernatant and extraction using chloroform 80

5.2.1.3. Phase separation and concentration 80

5.2.1.4. Silica gel column purification 81

5.2.1.5. Vacuum evaporation of solvent system to concentrate the purified pyocyanin 81

5.2.1.6. Quantification and preparation of purified pyocyanin for application 81

5.2.2. Structural elucidation and confirmation of purity of the compound 81

5.2.2.1. HPLC analysis 81

5.2.2.2. UV—Visible spectra of purified pyocyanin in different solvents 82

5.2.2.3. Mass spectrometry 82

5.2.2.4. ¹H NMR spectral analysis 82

5.2.3. Functional analysis of the purified compound 82

5.2.3.1. Antagonistic effect of purified pyocyanin against Vibrio spp 83

5.2.3.2. Determination of Minimum Inhibitory Concentration (MIC) 83

5.2.3.3. Luminescence inhibition assay 84

5.2.3.4. Stability testing and shelf life determination of purified pyocyanin 84

5.2.3.5. Economic feasibility of the process using genetically modified P. aeruginosa PA-pUCP-Phz++ strain 84

5.3. Results 84

5.3.1. Development of a downstream process for the large scale production of pyocyanin from PA-pUCP-Phz++ 84

5.3.2. Structural elucidation and confirmation of purity of the compound 85

5.3.3. Functional analysis of the purified compound 85

5.3.4. Stability testing and shelf life determination of purified pyocyanin 86

5.3.5. Feasibility of the process using genetically modified P. aeruginosa PA-pUCP-Phz++ strain 86

5.4. Discussion 86
Chapter 6 Toxicity of pyocyanin on various biological systems 94

6.1. Introduction 94

6.2. Materials and Methods 98

6.2.1. Brine shrimp lethality assay 98

6.2.2. Larval lethality assay 98

6.2.3. Cytotoxicity of pyocyanin on various cell lines 98

6.2.3.1. Cell lines and its growth condition 99

6.2.3.2. Cytotoxicity assays 99

6.2.3.2.1. Exposure to pyocyanin and sequential assay procedure for six parameters 100

6.2.3.2.1.1. Extracellular lactate dehydrogenase enzyme assay (LDH) 100

6.2.3.2.1.2. XTT assay 102

6.2.3.2.1.3. Neutral red uptake assay (NRU) 103

6.2.3.2.1.4. Sulforhodamine B assay (SRB) 105

6.2.3.2.1.5. Assay for glucose metabolism 107

6.2.3.2.1.6. Determination of pyocyanin-generated hydrogen peroxide 107

6.2.4. Effect of pyocyanin on nitrifying bacterial consortia used in SBSBR and PBBR 108

6.2.4.1. Assay for NH4-N removal/oxidation 108

6.2.4.2. Assay for NO2-N removal/oxidation 109

6.2.4.3. Assay for NO3-N build up 110

6.3. Results 110

6.3.1. Brine shrimp lethality assay 110

6.3.2. Larval lethality assay 111

6.3.3. Cytotoxicity of pyocyanin on various cell lines 111

6.3.3.1. Effect of pyocyanin-induced toxicity on glucose metabolism 112

6.3.3.2. Pyocyanin-induced hydrogen peroxide production 112

6.3.4. Effect of pyocyanin on nitrifying bacterial consortia used in SBSBR and PBBR 113

6.4. Discussion 113

Chapter 7 Conclusion and scope for future research 128

References 134