TABLE OF CONTENTS

Page No.

List of Tables i
List of Figures iii
Abbreviations vi
Abstract viii

Chapter 1: Review of Literature 1-28

1.1 Introduction 1
1.2 Distribution and diversity of alkaliphiles 2
1.3 Basic physiological properties of alkaliphiles 6
  1.3.1 Internal pH 6
  1.3.2 Cytoplasmic buffering 7
  1.3.3 Cell Shape and Size 8
  1.3.4 Cell wall characteristics 8
  1.3.5 Cell membrane 9
  1.3.6 Interacting sodium and proton cycles 10
  1.3.7 Energetics in alkaliphiles 11
1.4 Economic importance of alkaliphiles 14
1.5 Application of alkaliphiles for bioremediation of alkaline wastewater 18
1.6 Global approaches for studying alkaliphily 19
  1.6.1 Genomics 19
  1.6.2 Transcriptomics 22
  1.6.3 Proteomics 25

Chapter 2: Material and Methods 29-60

2.1 Reagent and Kits 29
  2.1.1 Reagents and chemicals 29
  2.1.2 Kits 29
2.2 Media preparation 30
2.3 Preparation of reagents 32
2.3.1 Stock solutions
2.3.2 Reagents for protein electrophoresis
2.3.4 Reagents for silver staining
2.3.4 Reagents for electron microscopy

2.4 Isolation, identification and characterization of potential alkaliphilic bacteria
2.4.1 Isolation of alkaliphilic bacteria with potential neutralization ability
2.4.2 Identification of the selected strain
2.4.3 Characterization of the selected strain

2.5 Industrial application of the isolated bacterium for neutralization of alkaline wastewater
2.5.1 Optimization of parameters for neutralization
2.5.2 Neutralization by wet culture pellet
2.5.3 Neutralization by lyophilized bacteria
2.5.4 Study of viability of 12/1 in wastewater
2.5.5 Comparison of bacterial neutralization with conventional acid neutralization

2.6 Study of metabolic product of the bacterium
2.6.1 Identification of functional group present in the culture supernatant
2.6.2 Identification of the specific metabolic product of the bacterium
2.6.3 Quantitative analysis of the metabolic product of the bacterium

2.7 Studying the morphological changes in isolated bacteria occurring in alkaline conditions via microscopic methods
2.7.1 Sample preparation for electron microscopy
2.7.2 Scanning Electron Microscopy (SEM) study
2.7.3 Transmission Electron Microscopy (TEM) study
2.7.4 Morphometric analysis

2.8 Studying the differential expression under alkaline and non alkaline conditions
2.8.1 Genome sequencing
2.8.2 Differential transcriptome analysis
2.8.3 Differential proteome analysis
3.1 Isolation identification and characterization of potential alkaliphilic bacteria
  3.1.1 Preface 61
  3.1.2 Results 64
    3.1.2.1 Isolation of alkaliphilic bacteria with potential neutralization ability 64
    3.1.2.2 Identification of the selected strain 65
    3.1.2.3 Characterization of the selected strain 69
  3.1.3 Discussion 74

3.2 Industrial application of isolated bacteria for bioremediation of alkaline wastewater
  3.2.1 Preface 78
  3.2.2 Results 80
    3.2.2.1 Optimization of parameters for neutralization 80
    3.2.2.2 Neutralization by wet culture pellet 82
    3.2.2.3 Neutralization by lyophilized powder 83
    3.2.2.4 Study of viability of 12/1 in wastewater 84
    3.2.2.5 Comparison of bacterial neutralization with conventional acid neutralization 84
  3.2.3 Discussion 84

3.3 Studying the mechanism of biological neutralization using spectroscopic or chromatographic methods
  3.3.1 Preface 86
  3.3.2 Results 88
    3.3.2.1 Analysis of neutralization on defined medium 88
    3.3.2.2 Identifying the functional group present in the culture supernatant 88
    3.3.2.3 Identifying the specific metabolic product of the bacterium 90
    3.3.2.4 Quantitative analysis of the metabolic product of the bacterium 91
  3.3.3 Discussion 93

3.4 Studying the morphological changes in isolated bacteria occurring in alkaline conditions via microscopic methods
  3.4.1 Preface 96
  3.4.2 Results 98
3.4.2.1 Scanning Electron Microscopy (SEM) study
3.4.2.2 Transmission Electron Microscopy (TEM) study
3.4.3 Discussion

3.5 Studying the differential protein expression under alkaline and non alkaline conditions
3.5.1 Preface
3.5.2 Results
3.5.2.1 Genome sequencing, assembly and annotation
3.5.2.2 Comparison with the closely related genome
3.5.2.3 Transcriptome sequencing, assembly and annotation
3.5.2.4 Differential transcriptome analysis
3.5.2.5 Differential proteome analysis
3.5.3 Discussion

Summary and Conclusion

References

Appendix

Publications