CHAPTER 1

1.1 Introduction to Getter materials 1
1.2 Importance of getter materials 2
1.3 Requirement of getter materials 2
1.4 Historical perspective 3
1.5 Current research in getter materials 4
1.6 Low activation temperature getters 4
1.7 Physics of Getter materials 5
 1.7.1 Different classes of getter materials 5
1.7.2 How do getters actually work

1.7.3 Diffusivity and diffusion length of oxygen for IVB and VB elements

1.8 Preparation and activation of getters

1.9 Storage / sorbing capacity of getters

1.10 Pumping speed for different gases

1.11 Production of XHV with getter materials

1.11.1 Materials for XHV

1.11.2 Limitations of normal pumping schemes

1.11.3 Advantages of getter materials for XHV

1.11.4 Selective sorption capacity of getters

1.12 Overview of present research work

1.12.1 Choice of materials

1.12.2 Existing literature on NEG materials

1.12.3 Techniques to prepare NEG materials

1.12.4 Working of NEG materials such as activation temperature, sorbing capacity and pumping speed
for different gases, etc.

<table>
<thead>
<tr>
<th>1.13</th>
<th>Arrangement of thesis</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 2</td>
<td>2.1 Introduction</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>2.2 Sputter deposition method for preparation of NEG coatings</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>2.2.1 Physics of Sputtering</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>2.2.2 Sputtering Yield of different elements (Ti-V-Zr) used in NEG coatings</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>2.2.3 Advantages of Sputter deposition over other techniques</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>2.2.4 Parameters of Sputtering deposition</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>2.2.5 Cylindrical Type, DC-Magnetron Sputtering system for deposition of NEG coatings</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>2.3 Historical View of Sputter deposition</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>2.4 Simulation of Cylindrical type DC magnetron and experimental set up</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>2.5 Deposition Conditions and steps in Growth of NEG film</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>2.5.1 Effect of substrate temperature</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>2.5.2 Adhesion of the film</td>
<td>45</td>
</tr>
</tbody>
</table>
2.5.3 Different types of targets used for NEG coatings

2.5.4 Types of substrate

2.6 Other techniques used for NEG coatings

2.6.1 Vacuum Arc deposition

2.6.2 Planar type RF-sputtering system

CHAPTER 3

3.1 INTRODUCTION

3.1.1 Surface characterization of NEG coatings

3.1.2 Role of X-ray Photoelectron Spectroscopy in the Characterization of NEG films

3.1.3 Description of our XPS system in used in the activation studies of NEG coatings

3.1.4 Benefits of XPS technique

3.2 Studies of NEG coatings using Scanning electron microscope

3.2.1 Energy dispersive X-ray spectra

3.2.2 SEM technique to study the
Influence of substrate on NEG film morphology

3.3 Role of diffraction technique in the structural study of NEG coatings 63

3.4 Morphological study of NEG thin film using Atomic force microscopy 66

3.5 Summary and Conclusions 69

CHAPTER 4

4.1 Introduction 70

4.2 Activation studies of ternary Coating of NEG material (Ti-V-Zr) prepared by plasma arc deposition 71

4.3 Activation studies on ternary coatings of NEG material (Ti-V-Zr) prepared by DC-magnetron sputtering deposition (Ar pressure of 8×10^{-3} mbar) 75

4.4 Activation Studies of ternary alloy coating of NEG materials (Ti-Zr-Nb) 79

4.5 Activation studies on ternary Coatings of Ti-V-Zr prepared by DC-magnetron sputtering deposition (Ar pressure of 1.1×10^{-2} mbar) 83

4.6 Crystallographic structure of NEG coating of Ti-V-Zr 87
4. 6.1 Calculation of crystallite size

4. 7 Elemental composition of NEG thin films

4. 7.1 Energy Dispersive X-ray spectroscopy (EDX)

4. 8 Summary and Conclusions

CHAPTER 5

5. 1 Production of XHV using NEG coated pipes

5. 1.1 Materials for XHV

5. 1.2 Set up for XHV measurement

5. 2 Development of NEG pump with heating elements

5.2.1 Activation studies of NEG pump

5.2.2 Measurement of XHV

5. 3 Measurement of Secondary electron Yield (SEY)

5. 3.1 Development of SEY Measurement System

5. 3.2 Results of SEY measurement of NEG thin film on SS304L substrate

5. 4 Summary and Conclusions
CHAPTER 6

6.1 Summary and Conclusions 103

BIBLIOGRAPHY 107