CONTENTS

SYNOPSIS

LIST OF ABBREVIATIONS
xxviii

LIST OF FIGURES

xxxii

LIST OF TABLES
Lii

Chapter 1: General introduction
1-39

1.1. Microheterogeneous systems and their importance
1
1.2. Radiation chemistry
4
1.3. Microemulsions
17
1.4. Room temperature ionic liquids (RTILs)
22
1.5. Cyclodextrins (CDs)
28
1.6. Quantum dots (QDs)
32
1.7. Outline of the thesis
38

Chapter 2: Experimental techniques
41-72

2.1. Introduction
41
2.2. Pulse radiolysis
42

2.2.1. Principle of pulse radiolysis
42
2.2.2. Linear accelerator (LINAC)
44
2.2.3. Kinetic spectrophotometer
46
2.2.4. Transient absorption measurements
48
2.2.5. Dosimeters for pulse radiolysis
49
2.2.6. Experimental data handling: The kinetic treatment
49
2.3. Cobalt-60 gamma source
52
2.4. X-ray diffraction
54
2.5. Transmission electron microscopy
57
2.6. Scanning electron microscopy
59
2.7. Steady-state UV-Vis absorption measurements
61
2.8. Steady-state photoluminescence measurements 63
2.9. Photoluminescence lifetime measurements 64
2.10. Fourier transform infrared spectrometer 68
2.11. Raman spectrometer 70

Chapter 3: Dual site for solvation of electrons and generation of counter ion radicals in CTAB based water-in-oil microemulsions: A pulse radiolysis study 73-93
3.1. Introduction 73
3.2. Experimental 76
3.3. Results and Discussion 78
 3.3.1. Hydrated electron 78
 3.3.2. Counter ion radical: Dibromide radical anion in CTAB and CPB microemulsions 83
 3.3.3. Reaction of Br₂⁻ radical with ABTS: A protocol for antioxidant assay for substrates insoluble in water 88
3.4. Conclusions 92

Chapter 4: Templated synthesis of CdSe quantum dots in cationic and anionic surfactant based microemulsions: Tuning of photoluminescence and their morphology 95-140
4.1. Introduction 95
4.2. Normal chemical route for the synthesis of CdSe QDs in CTAB based quaternary w/o microemulsions 97
 4.2.1. Materials and Methods 97
 4.2.2. Results and Discussion 99
4.3. Radiation chemical route for the synthesis of CdSe QDs in microemulsions: A rapid and one step templated approach 110
 4.3.1. Materials and Methods 110
 4.3.2. Results and Discussion 112
4.4. Conclusions

Chapter 5: Radiation stability of FAP (fluoro alkyl phosphate) based imidazolium room temperature ionic liquids: Influence of hydroxyl group functionalization of the cation

5.1. Introduction
5.2. Experimental
5.3. Results and Discussion
 5.3.1. UV-Vis absorption studies of irradiated FAP ionic liquids
 5.3.2. Physicochemical properties
 5.3.3. NMR and Mass spectral studies
 5.3.4. Hydrogen gas yields
 5.3.5. Pulse radiolysis study
 5.3.6. Photophysical studies
5.4. Conclusions

Chapter 6: Room temperature ionic liquids as a media for the synthesis of complex nanostructures

6.1. Introduction
6.2. Radiation mediated synthesis
 6.2.1. Materials and Methods
 6.2.2. Results and Discussion
6.3. Normal chemical route
 6.3.1. Materials and Methods
 6.3.2. Results and Discussion
6.4. Conclusions

Chapter 7: Self-assembled CdSe quantum dots functionalized with β-cyclodextrin: Reduced cytotoxicity and band gap engineering

7.1. Introduction
7.2. Experimental
7.3. Results and Discussion 248

7.3.1. Morphology and structural characterization 248

7.3.2. Optical studies 259

7.3.3. Pulse radiolysis study 275

7.3.4. Cytotoxicity study 277

7.4. Conclusions 278

Chapter 8: Summary and Outlook 281-289

References 291