List of Figures

1.1 Signal strength($\sigma_{\text{observed}}/\sigma_{\text{SM}}$) of the observed scalar for each of the search channels at ATLAS(top) and CMS(bottom) [1, 2]. ... 33

2.1 Branching ratio of the radion for all possible decay channels [3]. ϕ denotes the radion. .. 49

3.1 The effect on the excluded parameter space (shown in red) from various contributions. The top-left panel shows the excluded region using ratios of branching fractions of m_R alone. The top-right panel is the exclusion when contribution from both states are taken into account. The bottom-left panel shows the exclusion from applying the limit on signal strength at 125 GeV. Finally, the bottom-right panel shows the total excluded parameter space. This illustration uses $\Lambda_\phi = 3$ TeV and 95% CL limits from the ATLAS collaboration. ... 66

3.2 Comparison of m_T distribution after contribution from both scalars is taken into account for a parameter point that is ruled out and one that is not by the ATLAS limits. The parameters for illustration are $\xi = 0.045$ (left; disallowed) and $\xi = 0.065$ (right; allowed), $m_H = 125$ GeV, $m_R = 164$ GeV and $\Lambda_\phi = 3$ TeV. The label “SM” refers to the total SM background as extracted from [4, 5]. .. 67

3.3 Excluded parameter space for the case with $m_H = 125$ GeV (shown in red) using 95% CL limits from the ATLAS and CMS. This illustration uses $\Lambda_\phi =$1.5 TeV(top), 3 TeV(mid) and 5 TeV(bottom). ... 70

3.4 Excluded parameter space (shown in red) for the case with $m_R = 125$ GeV using 95% CL limits from the ATLAS and CMS. This illustration uses $\Lambda_\phi =$1.5 TeV(top) and 3 TeV (bottom). Almost the entire parameter space is excluded for $\Lambda_\phi =$5 TeV and higher. ... 71
3.5 Regions that agree with current data within 68% (green) and 95.4% (yellow) for $\Lambda_\phi = 3$ TeV. The top-left plot shows the case where no exclusions have been taken into account. The top-right side shows the change after taking exclusions into account. The bottom plot is for the case where we hold $m_R = 125$ GeV instead of m_H.

4.1 (a) Production cross section of radion via gluon fusion versus m_ϕ for 13 TeV and 14 TeV CM energies at the LHC. (b) Branching ratios for the radion decay modes as functions of its mass m_ϕ.

4.2 Normalized distribution of p_T^{γ} for two sample masses of radion, diphoton background and signal photon background. (a) Normalized distribution of $p_T^{\gamma,\text{leading}}$ for $m_\phi = 60$ GeV; (b) Normalized distribution of $p_T^{\gamma,\text{subleading}}$ for $m_\phi = 60$ GeV; (c) Normalized distribution of $p_T^{\gamma,\text{leading}}$ for $m_\phi = 100$ GeV; (d) Normalized distribution of $p_T^{\gamma,\text{subleading}}$ for $m_\phi = 100$ GeV.

4.3 (a) Luminosity required for 5 σ discovery of radion with m_ϕ with $\Lambda_\phi = 2$ TeV. (b) Maximum Λ_ϕ for a radion to be discovered at 5σ with m_ϕ.

4.4 Invariant mass peak of the signal against the background, for $m_\phi = 60$ GeV.

6.1 Charged Higgs branching ratios as function of its mass for (a) $V_\phi = 0.1$ eV and (b) $V_\phi = 1$ eV. The mass of σ particle is related to V_ϕ as in Eq. 6.1.3. We have chosen the other relevant variables $\lambda_2 = 1.0$ and $M_\rho = 100$ GeV for calculating the above branching ratios.

6.2 (a) The variation of the lower bound on V_ϕ as a function of M_{H^+} as defined by Eq. 6.2.8. The band represents the 3σ uncertainties shown in Table 6.1. (b) The branching ratios of the charged Higgs decay for the choice of $V_\phi = 1$ keV.

6.3 Charged Higgs pair production cross section as function of charged Higgs mass at 8 TeV and 14 TeV LHC center-of-mass energies.

6.4 A comparison of the missing energy distributions for the signal and the W^+W^- background at 8 TeV. Both the 150 GeV and 200 GeV charged Higgs mass cases of the signal is considered.

6.5 Kinematic distributions for the $(2l + E_T)$ signal with $M_{H^\pm} = 150, 200$ GeV and background (W^+W^-). The events satisfy the $E_T > 110$ GeV cut and the acceptance cuts listed in Eq. 6.4.11.

6.6 Kinematic distributions for the $(2l + E_T)$ signal with $M_{H^\pm} = 150, 200$ GeV and background (W^+W^-). The events satisfy the $\Delta \phi_{E_T,l_2} > 1.6$, $E_T > 110$ GeV cut and the acceptance cuts listed in Eq. 6.4.11.
6.7 Contour plots for the significance \(S_\sigma \) as a function of minimum cuts on \(\Delta \phi_{E_T, J_2} \) (y-axis) and \(p_T^{J_2} \) (x-axis) for (a) \(M_{H^\pm} = 150 \text{ GeV}, \ L = 3000 \text{ fb}^{-1} \), (b) \(M_{H^\pm} = 200 \text{ GeV}, \ L = 3000 \text{ fb}^{-1} \), (c) \(M_{H^\pm} = 150 \text{ GeV}, \ L = 5000 \text{ fb}^{-1} \), and, (d) \(M_{H^\pm} = 200 \text{ GeV}, \ L = 5000 \text{ fb}^{-1} \). The blue shaded regions in the above plots refer to 2\(\sigma \) statistical significance.

6.8 Illustrating the signal significance for different charged Higgs masses and integrated luminosities. The kinematic cuts are the same as given in Table 6.3.
List of Tables

1.1 The eigenvalues and the transformations of the first family of quarks and leptons .. 14

3.1 Best-fit values of signal strength used for global fits [6, 7, 8]. 65

4.1 Cut flow table for two different values of radion mass, $m_\phi = 60$ GeV and $m_\phi = 90$ GeV. 85

4.2 Selection cut, background reduction and significance at 14 TeV cm energy and 3000 fb$^{-1}$ integrated luminosity for different values of radion mass, m_ϕ. The signal-to-background significance, σ is defined by S/\sqrt{B}. 86

5.1 Yukawa couplings of u, d, ℓ to the neutral Higgs bosons h, H, A in the four different models. 101

6.1 Neutrino mass-mixing parameters with 3σ uncertainties [9]. The allowed ranges of parameters for the Normal Hierarchy (NH) and Inverted Hierarchy (IH) cases are shown separately. 112

6.2 Functional form and parameters of the resolution functions of different physics objects. These parameterizations give the value of σ parameter of the gaussian functions used. The first and second column of the last two rows are kept blank as the leptons are identified within $|\eta| < 2.5$. 118

6.3 Cut flow table at 14 TeV center-of-mass energy and 3000 fb$^{-1}$ integrated luminosity for $M_{H^\pm} = 150$ GeV and 200 GeV. The significance (S_σ) is defined in Eq. 6.4.12. 123