Chapter 6

Neutron response of LAMBDA spectrometer

6.1 Introduction

The LAMBDA spectrometer (consisting of 162 large BaF$_2$ crystals) has been developed for the measurement of high-energy γ-rays [Sup07], and is discussed in details in Chapter 3. Neutrons are the major source of backgrounds in the high energy γ-ray experiments. Until now, the LAMBDA spectrometer has been employed efficiently to reject the neutron backgrounds from the high-energy γ-ray spectrum by the time-of-flight (TOF) technique [Sup07, Dee12a, Sup12a, Dee10b]. However, instead of rejecting the neutrons, the neutron TOF spectra as recorded by the LAMBDA spectrometer can be utilized to extract the nuclear level density (NLD) parameter which is an important ingredient for the statistical model calculation as well as for a proper estimation of nuclear temperature. The most widely used detectors for neutron measurement are liquid hydrocarbon based scintillators such as NE213 [Nak01], BC501A [Ban07], BC521, BC525 [Ban09], etc. because of their good timing, pulse shape discrimination (PSD) properties and efficient energy transfer in the hydrogenous material. However, a BaF$_2$ scintillator can also be efficiently employed for neutron detection because of its excellent timing property (a fast decay component of 0.6 ns) and high density (4.88 g/cc). In this chapter, the LAMBDA spectrometer has been tested
for neutron spectroscopy and discussed whether it can be used as a neutron detector or not.

Neutrons having energies $E < 10$ MeV predominantly interact via (n, γ) and $(n, n'\gamma)$ reactions with the BaF$_2$ material, whereas for $E > 10$ MeV, the interaction occurs via different complicated reactions producing charged hadrons [Lan97]. The use of a neutron detector usually requires the knowledge of its intrinsic neutron detection efficiency which depends upon many factors, such as, neutron energy, electronic threshold, dimensions of the crystal, interaction mechanism, etc. [Ban09]. Earlier, many authors have investigated the neutron response of the BaF$_2$ scintillators of various dimensions and over several energy ranges. The efficiency for neutron energies up to 22 MeV was measured by Matulewicz et al. [Mat89], while Kubota et al. [Kub89] measured the efficiency between 15 MeV and 45 MeV by introducing a PSD cut on the neutron events. The response to fast neutrons in the energy ranges 15-150 MeV and 45–198 MeV was studied by R. A. Kryager et al. [Kry94] and Gunzert-Marx et al. [Gun05], respectively. The investigation was extended to relativistic neutrons with energies up to 1300 MeV by V. Wagner et al. [Wag97]. For neutrons in the energy range of 0.5 to 10 MeV, C. Bourgeois et al. [Bou85] and Lanzano et al. [Lan97] measured the efficiency of 14 cm and 5 cm thick BaF$_2$ crystals, respectively.

In this work, the neutron response of the existing LAMBDA spectrometer has been presented and compared with that of a standard liquid scintillator based neutron detector (BC501A). It has been shown that the neutron energy spectrum measured by the LAMBDA spectrometer in an in-beam experiment can be efficiently used to extract the NLD parameter. The average interaction length of neutrons in the BaF$_2$ scintillator have also been measured, for the first time, to precisely determine the neutron TOF energy resolution which
was uncertain in other measurements. Finally, a detailed GEANT4 simulation has been carried out to understand and to explain the neutron response of the LAMBDA spectrometer.

6.2 Experimental Details

6.2.1 Efficiency measurement

The intrinsic neutron detection efficiency of the LAMBDA spectrometer has been measured using a 252Cf spontaneous fission source (62 μCi). 252Cf decays via α particle emission (96.91%) and spontaneous fission (3.09%) with a half-life of 2.65 years and the energy spectrum of the emitted neutrons is well documented [Knol]. Generally, the fission events are measured using fragment detectors such as surface-barrier detectors [Tho87], PPAC and MWPC [Bre02]. Since a large number of γ-rays are also emitted from the excited fission fragments, a fast-timing γ-ray detector (e.g. BaF$_2$) can also be effectively used to select the fission events [Dee10c] as well as to obtain the start trigger for neutron TOF measurement.

Four large BaF$_2$ detectors (each having dimension of 3.5×3.5×35 cm3, a small part of the LAMBDA spectrometer), arranged in 2×2 matrix, were kept at a distance of 80 cm from the 252Cf source to study the neutron response. The detectors were gain matched and equal thresholds were applied to all of them. A BC501A-based neutron detector (5 inch in diameter and 5 inch in length) [Ban07] of known efficiency was also employed to measure the neutron energies, in order to compare its efficiency with that of the BaF$_2$ detectors. The neutron detector was kept on the other side of the source at a distance of 150 cm to equalize the solid angle of the two detector systems. Along with these detectors, a 50 element BaF$_2$ γ-multiplicity filter [Dee10a] was also used to detect the low energy discrete γ-rays emitted from the decay of excited fission fragments.
Chapter 6. Neutron response of LAMBDA spectrometer

to establish a correlation between the neutrons and the fission process. The multiplicity filter was split into two blocks of 25 detectors each, in staggered castle type geometry, and placed at a distance of 3 cm above and below the sealed 252Cf source. A level-1 trigger (A) was generated from the multiplicity filter array when at least one detector from both top and bottom blocks fired in coincidence above a threshold of 250 keV. Another trigger (B) was generated when the signal in any of the detector elements of the LAMBDA spectrometer or BC501A neutron detector crossed a threshold of 350 keV. A coincidence of these two triggers (A and B) generated the master trigger ensuring the selection of fission events and rejection of backgrounds. The schematic view of the experimental set-up is shown in Fig. 6.1. The TOF technique was employed for neutron energy measurement in both the detector systems using the start signal from the multiplicity filter. Along with the time spectrum, the pulse height spectrum of each detector was also measured to apply energy thresholds in off-line analysis. A typical TOF spectrum for one of the BaF$_2$ detectors (in the array) at a threshold of 350 keV is shown in Fig. 6.2a. The TOF spectrum

Figure 6.1: Schematic view of the experimental set-up for neutron studies using LAMBDA array.
Figure 6.2: [a] TOF spectrum for one of the BaF$_2$ detectors in the array. [b] Neutron energy spectrum of the BaF$_2$ array (filled circle) compared with the expected neutron energy spectrum from 252Cf (continuous line) [Knol].

was converted to energy spectrum using the prompt γ peak as a time reference. The neutron energy spectrum measured with the BaF$_2$ array (summing all four detectors) is shown in Fig. 6.2b (filled circles). The efficiencies of both the detector systems were determined by dividing the neutron yield per fission by the expected neutron energy distribution (continuous line in Fig. 6.2b) of 252Cf [Ban07, Ban09, Knol] (with temperature $T = 1.42$ MeV), properly normalized with the detector solid angle and the total number of fission events detected. The total number of fission events per second was also measured experimentally using the approach [Lan97] discussed below.

A 252Cf source was placed very close in front of one of the multiplicity filter (M1) block (arranged in 5×5 matrix, discussed later). The other multiplicity filter (M2) block was placed at a distance (d) on the other side of the source. The number of coincidence between M1 and M2 was measured for different
Chapter 6. Neutron response of LAMBDA spectrometer

distances of M2 from the source. For larger distances, a $1/d^2$ variation of the coincidence rate was observed. For smaller distances, the rate saturated to a value which was consistent with the number of fission events expected from the source activity. The experiment was repeated without the source to reject the background events (e.g. cosmic rays, α impurity in the BaF$_2$ crystal, etc). The number of fission per second measured experimentally was used for the efficiency calculation. It needs to be mentioned that the measurement contains a very small systematic error ($<1\%$) due to the presence of isotopic impurity in the source.

The efficiencies of individual detectors in the array were also determined. It was found that the intrinsic efficiencies of individual detector elements were identical and very similar to that observed for the array. The energy dependent efficiencies of the BaF$_2$ array and BC501A detector are shown in Fig. 6.3. It is interesting to note that, starting at 4 MeV, the neutron detection efficiency of the BC501A detector decreases monotonically as a function of neutron energy, whereas, the efficiency of the BaF$_2$ array increases sharply up to 2–3 MeV and reaches a plateau at efficiency $\sim 34\%$ which is comparable with that of the neutron detector at these energies. However, the BC501A has an extra advantage in discriminating the neutrons from the γ-rays using PSD technique.

The experimentally measured efficiencies were also compared with the corresponding GEANT4 [Ago03] simulation. The GEANT4 simulation for the neutron detector (BC501A) has already been discussed in detail in Ref [Ban07, Ban09]. In the case of the BaF$_2$ detector, a simulation was performed using a series of GEANT4 classes like detector construction and material building, particle and physics process definition, particle tracking, event action, etc. Individual neutrons were randomly generated by a particle generator (G4ParticleGun) according to neutron energy spectrum in 252Cf source and tracked through the
detector volume. The energy deposition was recorded step-by-step and finally added for each event. Since neutrons of energies $E < 10$ MeV interact with the BaF$_2$ material predominantly by (n, γ) or $(n, n'\gamma)$ [Lan97] and deposit their energy in the detector as photons, we considered only the processes of neutron
inelastic scattering and capture using G4LENeutronInelastic and G4LCapture models, respectively, in the physics list class (G4PhysicsList). We did not include the more complicated nuclear reaction mechanisms and the response of the photo multiplier tube. In the simulation, all the electromagnetic processes were considered for \(\gamma\)-ray interaction. It was found that the experimentally measured efficiencies of the BaF\(_2\) array and BC501A detector were in good agreement with the corresponding GEANT4 simulations. The energy dependent efficiencies of the BaF\(_2\) array at various energy thresholds are displayed in Fig. 6.3c. As can be seen from Fig 6.3, the overall efficiency for BaF\(_2\) detectors decreases with increasing energy threshold, while the nature of the spectrum remains the same. The cross-talk probability of neutrons in the BaF\(_2\) array was also estimated in off-line analysis and found to be \(\sim 12\%\) at a threshold of 350 keV. It should be mentioned that only statistical errors are shown in Fig 6.3. The systematic errors are \(< 1\%\) and arise predominantly due to isotopic impurity present in the source.

6.2.2 Time-of-flight energy resolution

The TOF energy resolution of neutrons is given by the relation,

\[
\left(\frac{\delta E}{E}\right)^2 = \left(2\frac{\delta T}{T}\right)^2 + \left(2\frac{\delta L}{L}\right)^2
\]

where \(\delta E\) is the energy resolution, \(\delta T\) is the time resolution of the detector, \(L\) represents the flight length of the neutron and \(\delta L\) is the flight path spread due to the detector size. As the density of the BaF\(_2\) material is high, it is expected that, the neutrons will interact mostly in the initial part of the detector volume. Hence, the total size of the detector should not be taken as the uncertainty in length, rather the average interaction length should be estimated and used for energy resolution calculations. The average interaction length of neutrons in the BaF\(_2\) detector was measured using the detector elements of \(\gamma\)-multiplicity filter.
Figure 6.4: *Experimental set-up for the measurement of average interaction length of neutrons in BaF$_2$ crystal.*

Figure 6.5: *Variation of the number of events as a function of distance corresponding to the number of detectors. Filled circles are the experimental data points and continuous line represents GEANT4 simulation.*

The length of each detector was 5 cm and its cross-sectional area was same as that of the LAMBDA array elements (3.5 × 3.5 cm2). Ten such detectors were arranged linearly (as shown in Fig. 6.4) one after another so that the
effective length that may be traversed by the neutrons is identical to that of
the bigger (35 cm) elements of the LAMBDA array. Next, the detectors were
gain matched and equal thresholds were applied to all (300 keV). The TOF
spectrum for each detector was measured using a $^{241}\text{Am}-^{9}\text{Be}$ source which was
kept at a distance of 50 cm from the first of the ten detectors kept in line.
The start trigger for TOF measurement was taken from another set of identical
BaF_2 detectors which were arranged in a 2×2 matrix and kept at a distance
of 5 cm on the other side of the source. A schematic view of the experimental
set-up to measure the average interaction length is shown in Fig. 6.4. In order

![Graph](image)

Figure 6.6: Simulated average interaction length (symbols) of neutron in a 35 cm
BaF_2 crystal at different incident energies

to estimate the average interaction length, the total number of counts in the
neutron TOF spectrum was calculated corresponding to an energy range of 3 −
6 MeV in each of the 10 detectors. Since, a flat overall background was obtained
in the TOF spectrum, the background counts were subtracted by selecting the
same channels (as for energy bins) from the left of the prompt γ peak. The total number of neutron events obtained in this energy range ($3 - 6$ MeV) is shown in Fig. 6.5 as a function of distance corresponding to the number of detectors. It is very interesting to note that the total number of counts is highest for the first detector and decreases for subsequent detectors, pointing towards the fact that the interaction of neutrons in the BaF$_2$ detector decreases exponentially with increase in distance. A complete GEANT4 simulation was also carried out for this experimental set-up to calculate the average interaction length. As could be seen from Fig. 6.5, the experimental data and the simulation results (continuous line in Fig. 6.5) match remarkably well with each other. This excellent match between the experimental data and the simulation provided us with the required confidence in GEANT4 simulation. The cross-talk probability was also measured for this set-up and was found to be less than 1%.

Next, a GEANT4 simulation has been performed to estimate the average interaction length for the LAMBDA detector set-up. The interaction point of neutrons in the BaF$_2$ material were found to decrease according to the relation $\exp(-\mu x)$ where $\mu = 0.13$ cm$^{-1}$. Using this distribution, the average interaction length of neutrons in the LAMBDA detector element was estimated using the relation

$$<x> = \frac{\sum x \exp(-\mu x)}{\sum \exp(-\mu x)} \quad (6.2)$$

and found to be 7.6 cm when kept at a distance of 80 cm from the source. As a result, the energy resolution at 4 MeV using equation (1) was found to be +0.4 MeV, corresponding to $\delta T = 0.96$ ns (intrinsic time resolution of the detector). It has also been shown that the average interaction length remains almost constant for different neutron energies (1 – 10 MeV) as shown in Fig 6.6.
6.3 In-beam-experiment: LAMBDA used as a neutron detector

The performance of the LAMBDA spectrometer as a neutron detector was tested by measuring the evaporated neutron energy spectrum in an in-beam experiment. The experiment was performed at the Variable Energy Cyclotron Centre, Kolkata using a 35 MeV alpha beam from the K-130 cyclotron. A self-supporting foil of 93Nb (99.9% pure) with a thickness of \(~1\) mg/cm\(^2\) was used as the target. The compound nucleus 97Tc\(^*\) was populated at the initial excitation energy of 36 MeV. The experimental set-up was similar to that used for the efficiency measurement and is shown in Fig. 6.1. To keep the background of

![Figure 6.7](image-url)
the detectors at a minimum level, the beam dump was kept 3 m away from the target and was well shielded with the layers of lead and borated paraffin. Data from the BaF$_2$ and BC501A detectors were recorded in an event-by-event mode in coincidence with the γ-multiplicities in order to measure the neutron energy spectrum and to extract the angular momentum of the compound nucleus. The TOF technique was employed for neutron energy measurement in both the detectors using the start trigger from the γ-multiplicity filter. Along with the time spectrum, the pulse height spectrum of each detector was also measured to apply the energy thresholds in off-line analysis. The cross-talk probability of neutrons in the BaF$_2$ array was estimated in the above experiment and found to be same as that obtained in the efficiency measurement with 252Cf.

The fold distribution was converted to the angular momentum distribution applying the approach discussed in Ref. [Dee10a]. The experimental fold distribution measured using the 50-element γ-multiplicity filter is shown in the top panel of Fig. 6.7. The angular momentum distributions corresponding to different folds are shown in the bottom panel of Fig. 6.7 while the average values are given in Table 6.1. The neutron energy spectra were extracted from the TOF spectra using the prompt γ-peak as a time reference. The neutron energy spectra measured using the BC501A and BaF$_2$ array are shown in Fig. 6.8 (open circles).

The asymptotic level density parameter $\tilde{a}(A) = A/k$ is an important input for CASCADE calculation [Puh77], where k is kept free and generally adjusted to get the best fit with the experimental data. We extracted the values of k from the neutron energy spectra measured using the BC501A and BaF$_2$ array for different folds of the γ-multiplicity filter. The simulated angular momentum distribution corresponding to each fold was used as an input in the modified version of the statistical model code CASCADE. The value of k was extracted
Chapter 6. Neutron response of LAMBDA spectrometer

Figure 6.8: [a] Experimental neutron energy spectra (open circles) of BC501A detector along with the CASCADE fit (continuous line) for different folds. [b] Experimental neutron energy spectra (open circles) of BaF$_2$ detector along with the CASCADE fit (continuous line) for different folds.

from the experimental data by chi-square minimization technique in the energy range of 3–7 MeV. The experimental neutron energy spectra along with the CASCADE predictions for the BC501A and BaF$_2$ detector systems are shown in Fig. 6.8. The best fitted values of the inverse level density parameter (k) for both the detector systems for different folds are are compared in Table 6.1.
Table 6.1: The values of k corresponding to different folds of BaF$_2$ and BC501A detectors.

<table>
<thead>
<tr>
<th>Fold</th>
<th>Angular momentum (\langle J \rangle h)</th>
<th>k (MeV) (BaF$_2$ array)</th>
<th>k (MeV) (BC501A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>14</td>
<td>10.8 ± 0.4</td>
<td>10.4 ± 0.2</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>10.5 ± 0.4</td>
<td>10.3 ± 0.4</td>
</tr>
<tr>
<td>4 & more</td>
<td>19</td>
<td>9.6 ± 0.3</td>
<td>9.7 ± 0.3</td>
</tr>
</tbody>
</table>

6.4 Results and discussion

As seen in the previous section-6.2.1, the neutron detection efficiency of the BaF$_2$ array is comparable to that of the liquid organic scintillator. The efficiency of the BaF$_2$ array increases sharply up to 2–3 MeV and reaches a plateau at efficiency \(\sim 34\% \) which is comparable with that of the neutron detector at these energies. The TOF energy resolution at 4 MeV is around \(+0.4 \) MeV, which is very good. Interestingly, it can also be seen from the Table 6.1 that the inverse level density parameters extracted from the BaF$_2$ and BC501A detectors in an in-beam experiment are in good agreement. It is also observed that the values of k decrease with the increase in angular momentum similar to the results obtained earlier for charged particle and neutron measurements [Pra12] from the same system. Thus, the excellent match between the level density parameter obtained from both the detector systems clearly suggests that the LAMBDA spectrometer can be effectively and efficiently used for the measurement of evaporated neutrons from an excited compound nucleus in an in-beam experiment with its intended use in the measurement of high energy \(\gamma \)-rays.