LIST OF FIGURES

<table>
<thead>
<tr>
<th>Fig. No.</th>
<th>Caption of the figure</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Schematic layout of Indus synchrotron radiation source facility</td>
<td>21</td>
</tr>
<tr>
<td>1.2</td>
<td>Indus-2 electron storage ring</td>
<td>21</td>
</tr>
<tr>
<td>1.3</td>
<td>One unit cell of Indus-2, BM: Dipole magnet; Q1D, Q3D, Q5D: Defocusing quadrupole magnets; Q2F, Q4F: Focussing quadrupole magnets; SF: Focussing sextupole, SD: Defocussing sextupole; CH: Horizontal steering magnet, CV: Vertical steering magnets, CHV: Combined horizontal and vertical steering magnet; BPI: Beam position indicator</td>
<td>22</td>
</tr>
<tr>
<td>1.4</td>
<td>Coordinates for describing the trajectories of electrons</td>
<td>24</td>
</tr>
<tr>
<td>1.5</td>
<td>Phase space ellipse at position s in ring</td>
<td>28</td>
</tr>
<tr>
<td>1.6</td>
<td>Phase space ellipse at position s in horizontal plane at dispersion location $\eta_x(s)$</td>
<td>29</td>
</tr>
<tr>
<td>1.7</td>
<td>Lattice functions in Indus-2, QD: defocusing quadrupole, QF: focusing quadrupole, BM: bending magnet, SF: focusing sextupole and SD: defocusing sextupole</td>
<td>31</td>
</tr>
<tr>
<td>1.8</td>
<td>Variation in horizontal beam emittance with beam energy</td>
<td>34</td>
</tr>
<tr>
<td>1.9</td>
<td>Variation in damping time in horizontal and vertical plane with beam energy</td>
<td>34</td>
</tr>
<tr>
<td>1.10</td>
<td>Path for on-momentum and off-momentum electrons</td>
<td>36</td>
</tr>
</tbody>
</table>
1.11 Phase stability of electrons
1.12 RF bucket in Indus-2
1.13 Longitudinal damping time and energy spread with beam energy
1.14 Physical acceptance in horizontal plane in Indus-2 for energy deviation
 $\delta = 0, \pm 1\%$
1.15 Physical acceptance in vertical plane in Indus-2
1.16(a) Dynamic aperture using MAD-8 code with systematic multi-pole field errors
1.16(b) Dynamic aperture using ELEGENT code with systematic multi-pole field errors
1.16(c) Dynamic aperture using RACETRACK code with systematic and random multi-pole field errors
1.17 Transverse momentum acceptance in one unit cell in Indus-2
1.18 Comparison of transverse and RF momentum acceptance in one unit cell in Indus-2
1.19 Momentum acceptance in Indus-2 using tracking code
1.20(a) Quantum lifetime with ratio of vertical aperture to vertical beam size
1.20(b) Quantum lifetime with ratio of horizontal aperture to horizontal beam size
1.20(c) Quantum lifetime with ratio of RF acceptance to beam energy spread
1.21 RF Cavity voltage and acceptance with different beam energy
1.22 Vacuum lifetime due to beam-gas atoms interaction at different beam energy 61
1.23 Touschek lifetime at different beam energy 64
1.24 Beam lifetime at different beam energy in Indus-2 64
2.1 Scattering and beam loss locations in ring 69
2.2 Electron Positions (a) at maximum β_x (dotted rectangle) with respect to their positions on the boundary of chamber at maximum β_x and (b) at maximum β_z (dotted rectangle) with respect to their positions on the boundary of chamber at maximum β_z. 71
2.3 Electron positions (a) at maximum β_x (dotted ellipse) with respect to their positions on the boundary of chamber at maximum β_x and (b) at maximum β_z (dotted ellipse) with respect to their positions on the boundary of chamber at maximum β_z. 76
2.4 Shape factor variation for elliptical shape of chamber 79
2.5 Increase in shape factor along the circumference in ring 80
2.6 Comparison in shape factor in one unit cell for rectangular and elliptical shape of chamber in case Indus-2 81
2.7 Increase in shape factor from rectangular to elliptical shape 81
2.8 Comparison in shape factor in one unit cell for square and circular shape of chamber in case Indus-2 82
2.9 Increase in shape factor from square to circular shape 82
2.10 Comparison in shape factor in one unit cell for circular shape of chamber

2.11 Increase in shape factor for circular shape

3.1 Coulomb scattering of two electrons in centre of mass and laboratory system

3.2 The variation of $D(\xi)$ with ξ

3.3 Measured horizontal and vertical fractional betatron tunes with change of current in Q3D family of quadrupoles

3.4 Measured vertical dispersion at all BPI locations in Indus-2

3.5(a) Electron distribution at the start of tracking with RF phase modulation f_s

3.5(b) Electron distribution after 1000 turns with RF phase modulation f_s

3.5(c) Electron distribution after 10,000 turns with RF phase modulation f_s

3.6(a) Electron distribution at the start of tracking with RF phase modulation $2*f_s$

3.6(b) Electron distribution after 1000 turns with RF phase modulation $2*f_s$

3.6(c) Electron distribution after 10,000 turns with RF phase modulation $2*f_s$

3.7(a) Bunch length variation with RF phase modulation f_s

3.7(b) Energy spread variation with RF phase modulation f_s

3.8(a) Bunch length variation with RF phase modulation $2*f_s$

3.8(b) Energy spread variation with RF phase modulation $2*f_s$

3.9 RF phase modulation in Indus-2, AFG is arbitrary frequency generator, f_s is synchrotron frequency, LLRF is Low Level RF system, SSA is solid state
amplifier

3.10(a) Beam spectrum without RF phase modulation

3.10(b) Beam spectrum with RF phase modulation

4.1 Comparison in beam current decay with time

4.2 BAGs and vacuum pumps location in one unit cell of Indus-2

4.3 Average vacuum pressure and beam lifetime during beam current decay

4.4 Beam current decay without and with closed orbit correction

4.5(a) Vertical orbit without and with closed orbit correction

4.5(b) Horizontal orbit without and with closed orbit correction

4.6(a) Vacuum pressure at stored current 100 mA

4.6(b) Beam lifetime before and after closed orbit correction during beam current decay

4.7(a) Measured beam current decay

4.7(b) Beam lifetime at different stored beam current during beam current decay

4.8(a) Beam current decay at different RF voltages

4.8(b) Beam lifetime at different stored current at different RF voltages

4.9(a) Wall current monitor signal at 100mA stored current when all 291 RF buckets are filled

4.9(b) Wall current monitor signal at 100mA stored current when two-third RF
buckets are filled

4.10(a) Beam current decay for two different RF buckets fill pattern

4.10(b) Beam lifetime for two different RF buckets fill pattern

4.11 Measured vacuum pressure at all BAGs for two different filling pattern at stored current 100mA

4.11(a) Measured beam current decay rate and fitted curve at different beam current

4.11(b) Measured beam current decay and decay curve with coefficients \(a \) and \(b \)

4.12 Measured vacuum pressure during beam current decay

4.13 Variation of \(<\beta_x.P> \), \(<\beta_z.P> \) during beam current decay

4.14 Vacuum lifetime during beam current decay

4.15 RF buckets for two different RF voltages

4.16 Touschek lifetime during beam current decay

4.17 Comparison of estimated and measured beam lifetime

5.1 Vertical and horizontal scrapers in the ring, mark (1) vertical scraper, (2) horizontal scraper, (3) stepper motors for vertical and horizontal movement of scraper blades

5.2 Beam lifetime with vertical scraper movement towards the beam centre

5.3 Beam lifetime with horizontal scraper movement towards the beam centre

5.4 Scattering angle and beam lifetime at different position of vertical scraper
5.5 Scattering angle and beam lifetime at different position of horizontal scraper

5.6 Momentum aperture with the horizontal scraper at $a=12.45−7.0$ mm

5.7 Calculated and measured beam lifetime with vertical scraper position

5.8 Calculated and measured beam lifetime with horizontal scraper position

5.9 Beam lifetime versus vertical scraper position with fitted curve

5.10 Comparison in beam current decay with 10% and 33% bunch gap

5.11 Vertical closed orbit before and after correction

5.12 Comparison in beam current decay before and after vertical orbit correction

5.13 Comparison in beam current decay before and after vertical orbit correction

5.14(a) Wall current monitor signal (WCM) during beam accumulation in single bunch

5.14(b) Wall current monitor signal showing the storage of single bunch at beam energy 2.5 GeV

5.15 Single bunch beam photograph taken using streak camera in visible diagnostic beamline

5.16 Beam current decay in single bunch mode at two different beam energy

5.17(a) Measured bunch length during beam current decay at beam energy 550 MeV

5.17(b) Measured bunch length during beam current decay at beam energy 2.5 GeV

5.18 Effect of RF voltage on beam lifetime at beam energy 2.5 GeV