CONTENTS

<table>
<thead>
<tr>
<th>SYNOPSIS</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>xiv</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LIST OF FIGURES</th>
<th>xx</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>LIST OF TABLES</th>
<th>xxvi</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>LISTS OF ABBREVIATIONS</th>
<th>xxvii</th>
</tr>
</thead>
</table>

CHAPTER 1 A BRIEF INTRODUCTION TO THIN FILMS: SURFACE AND INTERFACE PHENOMENA

1.1 Why thin films?
1.2 Thin films, thick films and coating
1.3 Methods for thin film deposition
1.4 Thin film growth modes
1.5 Inside thin film – the microstructure
1.6 Surface and interfaces
1.7 Surface and interface analysis methods
1.8 Motivation for the present thesis
1.9 Scope of the thesis

References

CHAPTER 2 EXPERIMENTAL TECHNIQUES

2.1 Introduction
2.2 Thin film sample preparation
2.3 Secondary ion mass spectrometry
2.4 Rutherford backscattering spectrometry
CHAPTER 3 PHASE FORMATION IN THIN FILMS: A STUDY ON
Ar\(^+\) ION BEAM IRRADIATED Mo/Si THIN FILM

3.1 Introduction 45
3.2 Sample preparation and experiments 47
 3.2.1 Thin film deposition 47
 3.2.2 Ar\(^+\) ion beam irradiation 47
 3.2.3 Other experimental details 48
3.3 Experimental results 49
 3.3.1 GIXRD and SIMS analyses 49
 3.3.2 Raman and GIXRD analyses upon RTP annealing 54
 3.3.3 RBS and SIMS analyses of the annealed samples 58
3.4 Discussion 61
3.5 Conclusion 64
References 65
CHAPTER 4 RESIDUAL STRESS IN Mo THIN FILMS USING X-RAY DIFFRACTION

4.1 Introduction 67
4.2 Mathematical formalism 69
4.3 Sample preparation and experiments 73
 4.3.1 Thin film deposition 73
 4.3.2 Stress measurement using GIXRD 74
 3.2.3 Other experimental details 75
4.4 Experimental results 76
 4.4.1 Single hkl method 77
 4.4.2 Multi hkl method 79
4.5 Discussion 86
4.6 Conclusion 92

References 93

CHAPTER 5 EFFECT OF MICROSTRUCTURE ON SECONDARY ION MASS SPECTROMETRY DEPTH PROFILING OF Mo/Si INTERFACE

5.1 Introduction 96
5.2 Sample preparation and experiments 98
 5.2.1 Thin film deposition 98
 5.2.2 Crystallinity, phase and microstructure 98
 5.2.3 Elemental depth profiling 99
5.3 Experimental results 99
 5.3.1 X-ray diffraction 99
5.3.2 Microstructure: SEM 101
5.3.3 Secondary ion mass spectrometry 104
5.3.4 Topography: AFM 106
5.3.5 Rutherford backscattering spectrometry 108

5.4 Discussion 109
5.5 Conclusion 116

References 118

CHAPTER 6 SUMMARY AND SCOPE FOR FUTURE WORK

6.1 Summary 120
6.2 Scope for future works 124

APPENDIX A 125