List of Tables

Table 3.1  Box counting dimension and volume fractal dimension for twenty five blocks, where $R^2$ represent regression coefficient for straight line fit to obtain Box counting fractal dimension.

Table 4.1  Here comparative variation of consecutive 50 events windows for $D_C$ and $D_2 - D_{22}$ values is given for the entire study region.

Table 4.2  Table provides values of $D_C$ and $D_2 - D_{22}$ versus time for consecutive 100 events windows in the study region.

Table 4.3  Variation of consecutive 100 event windows fractal Correlation Dimension ($D_C$) and b-value with time for the events in the entire study region, depicted in Fig. 4.10 is listed in this table.

Table 4.4  Here error in each window of consecutive 50 events windows with $D_C$ and $R^2$ values is given for the entire study region.

Table 4.5  Here error in each window of consecutive 100 events windows with $D_C$ and $R^2$ values is given for the entire study region.

Table 4.6  Table provides values of $D_2(t)$ versus time for consecutive 100 events windows in the study region.

Table 5.1  The estimated velocities in the ITRF05 Reference Frame of campaign and continuous sites are given. Here $V_N$, $V_E$ and $V_U$ are north, east and up components of the absolute velocity, whereas $\sigma_N$, $\sigma_E$ and $\sigma_U$ are corresponding standard deviations. The site velocities are given in mm/yr for north, east and up components with 1σ uncertainty. The rate of Indian plate motion relative to Eurasian plate is calculated by using the values reported in (De Mets et al. 2010).
## List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig.1</td>
<td>The map shows the study region with Latitude 28°N-33°N and Longitude 76°E-82°E in the Himalayan region.</td>
<td>5</td>
</tr>
<tr>
<td>Fig.2.1</td>
<td>Map showing meizoseismal zones of four great earthquakes along the Himalayan Front. Box marks the study area extending of Latitude 28°N-33°N and Longitude 76°E-82°E of Himalaya (after Yeats and Thakur, 1998).</td>
<td>19</td>
</tr>
<tr>
<td>Fig. 2.2</td>
<td>Major tectonic features in the Himalaya (after Gansser, 1964)</td>
<td>21</td>
</tr>
<tr>
<td>Fig.2.3</td>
<td>The important fault system (MCT: Main Central Thrust, MBT: Main Boundary Thrust, MFT: Main Frontal Thrust) beneath the Himalaya is depicted (modified after Gansser, 1964).</td>
<td>23</td>
</tr>
<tr>
<td>Fig.3.1</td>
<td>A schematic diagram of the box-counting method for determining the capacity fractal dimension of the fault system. The r is measure of side of a square box and N(r) is number of boxes containing at least one or any part of fault system.</td>
<td>33</td>
</tr>
<tr>
<td>Fig.3.2.(a)</td>
<td>The log (1/r) versus log N(r) is shown for determination of capacity dimension of the block “A”, “N”, “L” and “S”. The reciprocal of the value for the slope of the line assigns the value of capacity dimension (D₀). R² represents correlation coefficients of the regression line</td>
<td>34</td>
</tr>
<tr>
<td>Fig.3.2.(b)</td>
<td>The log (1/r) versus log N(r) is shown for determination of capacity dimension for some of the blocks having lesser coverage of structural elements. The reciprocal of the value for the slope of the line assigns the value of capacity dimension (D₀). R² represents correlation coefficients of the regression line.</td>
<td>35</td>
</tr>
<tr>
<td>Fig.3.3</td>
<td>The map of the region shows the tectonic features of the entire study area used for the determination of capacity fractal dimension (D₀) (Modified after Dasgupta et. al., 2000).</td>
<td>38</td>
</tr>
<tr>
<td>Fig.3.4</td>
<td>The map of the region shows the capacity dimension value (D₀) of each block of the tectonic features (Modified after Dasgupta et. al., 2000).</td>
<td>39</td>
</tr>
<tr>
<td>Fig.3.5</td>
<td>The figure shows the volume fractal dimension distribution of the studied area. The four black curves which denote Indus Suture, Karakoram Fault, MCT and MBT from north to south are the rough sketch (not to scale) made to show the volume fractal dimension distribution in different parts of the region.</td>
<td>42</td>
</tr>
</tbody>
</table>
Fig. 4.1  Log $C(r)$ versus Log $r$ is shown for determination of lowest $D_C$ (fifth window) from the slope of hundred events window earthquake distributed within the Latitude (28ºN-33ºN) and Longitude (76ºE-82ºE). Arrows demarcate the scaling region obeying power law i.e. scale invariance. $R^2$ represents correlation coefficients of the regression line.

Fig. 4.2  Log $C_q(r)$ versus Log $r$ is shown for determination of $D_q$ of (ninth window) from the slope of fifty events window earthquake distributed within the Latitude (28ºN-33ºN) and Longitude (76ºE-82ºE).

Fig. 4.3  The log $C_q(t)$ - log $t$ relationship for the temporal distribution of 100 events is plotted for $q=2$. The slope of linear portion obtained gives temporal generalized dimension ($D_q(t)$) value.

Fig. 4.4  The spatial distribution of all events used for the fractal correlation dimension determination is clearly shown.

Fig. 4.5.(a) Frequency-magnitude distribution of events occurred in the first window of 100 events for $D_C$ value determination is plotted. The line shows the maximum likelihood estimates of the $b$ value. Here the value of $b$ is 0.7534.

Fig. 4.5.(b) Frequency-magnitude distribution of events occurred in the second window of 100 events for $D_C$ value determination is plotted. The line shows the maximum likelihood estimates of the $b$ value. Here the value of $b$ is 0.6201.

Fig. 4.5.(c) Frequency-magnitude distribution of events occurred in the third window of 100 events for $D_C$ value determination is plotted. The line shows the maximum likelihood estimates of the $b$ value. Here the value of $b$ is 0.6980.

Fig. 4.5.(d) Frequency-magnitude distribution of events occurred in the fourth window of 100 events for $D_C$ value determination is plotted. The line shows the maximum likelihood estimates of the $b$ value. Here the value of $b$ is 1.0557.

Fig. 4.5.(e) Frequency-magnitude distribution of events occurred in the fifth window of 100 events for $D_C$ value determination is plotted. The line shows the maximum likelihood estimates of the $b$ value. Here the value of $b$ is 0.4005.

Fig. 4.5.(f) Frequency-magnitude distribution of events occurred in the sixth window of 100 events for $D_C$ value determination is plotted. The line shows the maximum likelihood estimates of the $b$ value. Here the value of $b$ is 0.5554.
Fig.4.5.(g) Frequency-magnitude distribution of events occurred in the seventh window of 100 events for $D_C$ value determination is plotted. The line shows the maximum likelihood estimates of the b value. Here the value of b is 0.4024.

Fig.4.5(h) Frequency-magnitude distribution of events occurred in the eighth window of 100 events for $D_C$ value determination is plotted. The line shows the maximum likelihood estimates of the b value. Here the value of b is 0.4399.

Fig.4.6. The plot for the earthquakes magnitude versus time for the entire study area is shown. The date indicated in the graph show earthquakes of magnitude 6 M and above for the entire study area.

Fig.4.7 The comparative study of various consecutive subsets of 50 events windows, 100 events windows and 200 events is shown in order to see the sensitiveness of $D_C$ value. The lowest $D_C$ obtained for all the subsets during the year of 2005 are consistent with each other. Here the temporal variation of $D_C$ is shown for fifty events where the mean time (3.5.1998), (28.12.2004) and 1.3.2005 represents low $D_C$ of 0.836, 0.946 and 0.285 respectively.

Fig.4.8.(a). $D_C$ value contour is plotted for three windows of 50 events each with low $D_C$ values 0.836 and 0.946 and 0.285 in the considered study region. The lowest $D_C$ value patch represents the possible highly stressed region and significant clustering of events. (Roy and Mondal, 2012c)

Fig.4.8.(b) Spatial distribution of 150 events that contributed three low $D_C$ values and hence the remarkable low $D_C$ patches in the entire study area is shown in Fig.4.8 (a). (Roy and Mondal, 2012c)

Fig.4.8(c) Significant earthquakes 1500–1950 plotted on a Cartesian projection (top) and on an oblique Mercator projection (below) centered on the pole. (after Bilham and Ambraseys, 2005)

Fig.4.8(d) Estimates for the rupture areas of earthquakes between 1500 and 1934 in the central Himalaya is shown. The two boxes indicate the lowest $D_C$ patches in the study area. (after Bilham and Ambraseys, 2005).

Fig.4.9. The plots for earthquake magnitude versus time for three low $D_C$ windows, 6th, 9th, 10th and the last 16th window is shown.
Fig. 4.10 The temporal variation of $D_c$ and $b$-value for consecutive hundred events window is shown, where point given by box (2.1.2005) represent significant clustering of events with low $D_c$ value 0.529 and also low $b$-value of 0.4 for the entire study area. (Roy and Mondal, 2012c)

Fig. 4.11(a) Distribution of earthquakes at shallower depth, extending the Himalayan region with latitude (28°N–33°N) and longitude (76°E–82°E) is plotted. (Roy and Mondal, 2012a)

Fig. 4.11(b) Distribution of earthquakes at deeper depth, extending the Himalayan region with latitude (28°N–33°N) and longitude (76°E–82°E) is plotted. (Roy and Mondal, 2012a)

Fig. 4.11(c) The spatial distribution of three low $D_c$ events extending the Himalayan region with latitude (28°N–33°N) and longitude (76°E–82°E) is plotted. The red bigger open circles denote the clustering of events. (Roy and Mondal, 2012a)

Fig. 4.11(d) Three dimensional distribution patterns is shown for the three windows events, contributing low $D_c$ values. The red bigger open circles denote the clustering of events. (Roy and Mondal, 2012a)

Fig. 4.11(e) Three dimensional distribution patterns is shown for the all windows events, indicating general seismicity of the region. (Roy and Mondal, 2012a)

Fig. 4.11(f) An estimated geodynamical model is depicting the present active seismicity in the study area. (Roy and Mondal, 2012a)

Fig. 4.12 Events distribution showing two zones one at latitude 32°N-33°N & longitude 76°E-77°E and latitude 30°N-31°N & longitude 79°E-80°E where intense seismicity is observed. The two values 1.866 and 1.818 are the highest capacity dimension.

Fig. 4.13 Events distribution of three low $D_c$ of fifty events windows showing the intense seismicity clustering at two zones lying at latitude 32°N-33°N & longitude 76°E-77°E and latitude 30°N-31°N & longitude 79°E-80°E, where high capacity dimension of structural elements is also observed.

Fig. 4.14 The block marked by capital letters A, L, N and S are estimated as possible high seismic zones of the study area. (Roy et al, 2012b)
Fig. 4.15 (a) The log \( C_q(r) \) – log \( r \) relationship is shown for spatial distribution of earthquakes for 10\(^{th}\) window of 50 events having lowest \( D_C \) value of 0.285 in the study area. The slope of the linear portion of graph log \( C_q(r) \) – log \( r \) gives \( D_q \) for \( q = 3 \) to 22 for the windows within the region of study.

Fig. 4.15 (b) The log \( C_q(r) \) – log \( r \) relationship is shown for spatial distribution of earthquakes for 5\(^{th}\) window of 100 events having lowest \( D_C \) value of 0.529 in the study area. The slope of the linear portion of graph log \( C_q(r) \) – log \( r \) gives \( D_q \) for \( q = 3 \) to 22 for the windows within the region of study.

Fig. 4.16 \( D_q \) – \( q \) plot or \( D_q \) spectrum is shown for the 5\(^{th}\) window of 100 events, 9\(^{th}\) and 10\(^{th}\) windows of fifty events (of lowest \( D_C \)) with \( q = 2 \) to 22. With the increase of \( q \) value leads to exponential decay of \( D_q \) value which shows the multifractal nature for the events occurrence within the region of study.

Fig. 4.17 The plot illustrates temporal variation of the difference (\( D_2 - D_{22} \)) for spatial distribution of consecutive 50 events and 100 events windows within the study region.

Fig. 4.18 The temporal variation of multifractal dimension \( D_q \) for the spatial distribution of seismic events of consecutive 100 events windows for the study region is considered.

Fig. 4.19 The log \( C_q(t) \) - log \( t \) relationship for the temporal distribution of 100 events is shown for \( q = 2 \). The slope of linear portion obtained gives temporal generalized dimension (\( D_q(t) \)) value.

Fig. 4.20 The Frequency (Events per month) of events for the entire study area is plotted.

Fig. 4.21 The temporal variation of \( D_2(t) \) for consecutive hundred events window is shown, where point given by box (2.1.2005) represent significant clustering of events with low \( D_2(t) \) value of 0.1995 for the entire study area.

Fig. 4.22 The comparative temporal variation of \( D_2(t) \), \( D_C \) and \( b \)-value for consecutive hundred events window is shown, where point given by box (2.1.2005) represent significant clustering of events with low \( D_2(t) \) value 0.1995, \( D_C \) value 0.529 and also low \( b \)-value 0.4 for the entire study area.
Fig. 4.23  The plot shows $D_q(t) - q$ plot or $D_q(t)$ spectra for $q = 2$ to 22. With the increase of $q$ value leads to exponential decay of $D_q(t)$ value which shows the multifractal nature for the events occurrence within the region of study. $D_q - q$ plot or $D_q$ spectrum is shown for the 2nd window of 100 events.

Fig. 5.1  The location of campaign mode GPS stations is shown. The sites are marked here by the symbol “+” in red colour. Here double “+” symbol depict two stations at Pithoragarh district and Champawat is one of important sites in Kumaun Himalayan region.

Fig. 5.2  The photograph shows the arrangement of GPS tripod with antenna at site Champawat.

Fig. 5.3  Time series of a continuous GPS station (dehr) are plotted from top to bottom with north, east and up coordinate components respectively, with the estimated velocities and uncertainty. The continuous lines represent the interpolation model.

Fig. 5.4  Time series of a continuous GPS station (gbpk) are plotted from top to bottom with north, east and up coordinate components respectively, with the estimated velocities and uncertainty. The continuous lines represent the interpolation model.

Fig. 5.5  Time series of a continuous GPS station (muns) are plotted from top to bottom with north, east and up coordinate components respectively, with the estimated velocities and uncertainty. The continuous lines represent the interpolation model.

Fig. 5.6  Time series of a continuous GPS station (badr) are plotted from top to bottom with north, east and up coordinate components respectively, with the estimated velocities and uncertainty. The continuous lines represent the interpolation model.

Fig. 5.7  Time series of a campaign GPS station (jals) are plotted from top to bottom with north, east and up coordinate components respectively, with the estimated velocities and uncertainty. The continuous lines represent the interpolation model.

Fig. 5.8  Time series of a campaign GPS station (jagh) are plotted from top to bottom with north, east and up coordinate components respectively, with the estimated velocities and uncertainty. The continuous lines represent the interpolation model.
Fig. 5.9 Time series of a campaign GPS station (utnh) are plotted from top to bottom with north, east and up coordinate components respectively, with the estimated velocities and uncertainty. The continuous lines represent the interpolation model.

Fig. 5.10 Time series of a campaign GPS station (saih) are plotted from top to bottom with north, east and up coordinate components respectively, with the estimated velocities and uncertainty. The continuous lines represent the interpolation model.

Fig. 5.11 Time series of a campaign GPS station (vivh) are plotted from top to bottom with north, east and up coordinate components respectively, with the estimated velocities and uncertainty. The continuous lines represent the interpolation model.

Fig. 5.12 Time series of a campaign GPS station (cmoh) are plotted from top to bottom with north, east and up coordinate components respectively, with the estimated velocities and uncertainty. The continuous lines represent the interpolation model.

Fig. 5.13 The observed estimated site velocities of GPS stations are plotted as black arrows in ITRF05 reference frame for the period from 2008 to 2011 with error ellipse at 95% confidence level.

Fig. 5.14 The estimated strain-rate principal axes obtained by the velocities of the GPS stations are plotted for the period from 2008 to 2011.

Fig. 5.15 The calculated estimation of sites’ relative velocities with respect to Eurasian plate is plotted as black arrows for the period from 2008 to 2011, with error ellipse at 95% confidence level.

Fig. 5.16 The vertical velocities of the sites with the data set acquired (three years) are depicted here.

Fig. 5.17 Fractal capacity dimension ($D_0$) value of the structural elements in each block is given. The block – “S” shows the significant tectonic elements present in the block with highest capacity dimension value of 1.818 marked by big open red circle.

Fig. 5.18 Seismicity of the study region with the structural elements and Fractal capacity dimension ($D_0$) blocks marked by capital letters –“A-Y” is depicted. The block – “S” shows the significant tectonic elements present in the block with highest
capacity dimension value of 1.818 and having very less seismicity marked by red squared area and small black open circles denotes the earthquakes.

Fig.5.19 Above figure shows spatial distribution of earthquakes occurred during the recent ten years. The capital letters depict the block number and fractional value shows the capacity dimension value of the corresponding block. Here the six highest capacity dimension value block in the entire study area are shown with seismicity marked by squared boxes. The small open circles denote the earthquakes. The single bigger circle indicates the identified zone of high seismic risk which is the block – “S” with least seismicity and highest capacity dimension value.

Fig.5.20 The important faults and thrusts of the block where the highest capacity dimension ($D_0$) with least seismic activity during the recent ten years is observed. The open circle indicates earthquake. The block – “S” is experiencing with the extensive convergence of strain accumulation. This block lying between Latitude 29ºN - 30ºN and Longitude 79ºE - 80ºE is estimated as the highly seismic hazard zone.
List of symbols and abbreviations

\begin{itemize}
\item $D_q$ \quad Generalized Fractal Dimension
\item $D_C$ \quad Correlation Fractal Dimension
\item $D_0$ \quad Capacity Fractal Dimension
\item $(\theta_i)$ \quad Colatitude
\item $(\phi_i)$ \quad Longitude
\item ° \quad Degree
\item N \quad North
\item E \quad East
\end{itemize}
List of Publications

I) Publication in National and International Journal


- Roy, P.N.S., Mondal, S.K and Joshi, M (2012). Seismic Hazards Assessment of Kumaun Himalaya and adjacent region, Natural Hazards, DOI 10.1007/s11069-012-0235-0.


II) Publication in National and International Conferences/Symposia


2nd India Disaster Management Congress, Vigyan Bhavan, New Delhi, India, 4th -6th November 2009.


III) Papers under revision and review

Mondal, S.K et al., Application of GPS Strain Measurement, Fractal Capacity Dimension and Past Seismicity for Seismic Hazard Estimation in Himalayan Region.

Mondal, S.K and Roy, P.N.S., Temporal pattern of seismicity and multifractal characteristics to understand the earthquakes clustering behavior in Northwest Himalayan region.