8 FUTURE DIRECTIONS FOR RESEARCH:

In this research work, we concluded the polyherbal formulation of *A. bracteolata, T. indica* and *L. aspera* can be an effective common antivenom drug. Several phytochemicals of this plant showed different pharmacological activity which neutralizes the toxic of snake venom. We designed the methodology based on antivenom property of drug point out by World Health Organization (WHO). There by some venom toxicity pathway inhibition were could not be considered in current status and more over all *in vivo* and *in vitro* experiments were done using the crude extract of the plants since screening and isolaton several active compounds from three plants based on their inhibition peak is generally time consuming, expensive and complicated job. Alternatively, *in silico* approaches were initially implemented to direct screening, so that pick up active phytochemical among thousands of compounds for drug design and drug discovery. Making use of this wide application of computational biology, we screened two compounds and prove that the selected compounds can neutralize venom spreading factor hyaluronidase enzyme, toxicity and oxidative stress induced by venom PLA$_2$.

However some more supplementary compounds from these plants were still remain silent and we could not express the activity of the plants against other type of snake venoms, especially King cobra and Indian Krait. In future, this research will lead to the identification and isolation of the potent compounds against several other poisonous snake venoms. Thus, commercial development of an effective antidote for snake venom will be made possible from the basic studies made now.